Version 43 31 { Type BoundComposite AABBMin 1153.6027832 2585.5251465 -518.9072876 AABBMax 1431.2375488 2944.8208008 136.4629211 Radius 398.649 Centroid 1292.4201660 2765.1728516 -191.2221680 CG 1151.9932861 2464.8034668 48.2680321 VertexColors null MaterialColors null ChildTransforms 215 { Matrix 0 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 1 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 2 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 3 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 4 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 5 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 6 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 7 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 8 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 9 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 10 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 11 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 12 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 13 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 14 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 15 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 16 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 17 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 18 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 19 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 20 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 21 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 22 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 23 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 24 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 25 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 26 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 27 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 28 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 29 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 30 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 31 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 32 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 33 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 34 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 35 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 36 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 37 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 38 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 39 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 40 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 41 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 42 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 43 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 44 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 45 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 46 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 47 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 48 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 49 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 50 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 51 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 52 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 53 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 54 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 55 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 56 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 57 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 58 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 59 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 60 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 61 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 62 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 63 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 64 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 65 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 66 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 67 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 68 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 69 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 70 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 71 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 72 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 73 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 74 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 75 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 76 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 77 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 78 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 79 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 80 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 81 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 82 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 83 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 84 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 85 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 86 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 87 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 88 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 89 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 90 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 91 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 92 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 93 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 94 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 95 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 96 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 97 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 98 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 99 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 100 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 101 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 102 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 103 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 104 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 105 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 106 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 107 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 108 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 109 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 110 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 111 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 112 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 113 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 114 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 115 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 116 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 117 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 118 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 119 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 120 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 121 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 122 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 123 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 124 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 125 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 126 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 127 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 128 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 129 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 130 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 131 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 132 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 133 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 134 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 135 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 136 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 137 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 138 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 139 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 140 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 141 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 142 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 143 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 144 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 145 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 146 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 147 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 148 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 149 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 150 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 151 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 152 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 153 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 154 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 155 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 156 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 157 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 158 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 159 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 160 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 161 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 162 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 163 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 164 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 165 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 166 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 167 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 168 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 169 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 170 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 171 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 172 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 173 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 174 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 175 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 176 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 177 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 178 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 179 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 180 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 181 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 182 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 183 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 184 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 185 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 186 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 187 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 188 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 189 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 190 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 191 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 192 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 193 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 194 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 195 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 196 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 197 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 198 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 199 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 200 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 201 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 202 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 203 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 204 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 205 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 206 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 207 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 208 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 209 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 210 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 211 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 212 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 213 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } Matrix 214 { 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 } } ChildFlags 215 { Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 FOLIAGE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS MAP_DYNAMIC OBJECT PED PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 FOLIAGE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS MAP_DYNAMIC OBJECT PED PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 FOLIAGE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS MAP_DYNAMIC OBJECT PED PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 FOLIAGE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS MAP_DYNAMIC OBJECT PED PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 FOLIAGE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS MAP_DYNAMIC OBJECT PED PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 FOLIAGE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS MAP_DYNAMIC OBJECT PED PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 FOLIAGE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS MAP_DYNAMIC OBJECT PED PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE MAP_WEAPON Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 FOLIAGE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS MAP_DYNAMIC OBJECT PED PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } Item { Flags1 MAP_ANIMAL MAP_COVER MAP_DYNAMIC MAP_VEHICLE Flags2 ANIMAL ANIMAL_RAGDOLL EXPLOSION FORKLIFT_FORKS GLASS OBJECT PED PLANT PROJECTILE RAGDOLL TEST_AI TEST_CAMERA TEST_SCRIPT TEST_VEHICLE_WHEEL TEST_WEAPON VEHICLE_BVH VEHICLE_NOT_BVH } Item { Flags1 MAP_WEAPON Flags2 PROJECTILE TEST_CAMERA TEST_WEAPON } } Children 215 { phBound { Type BoundBVH AABBMin 1205.6298828 2621.1784668 38.7013855 AABBMax 1207.7829590 2623.0844727 46.9135017 Radius 4.3505 Centroid 1206.7064209 2622.1313477 42.8074417 CG 897.7724609 1950.5172119 35.0782089 Margin 0.005 GeometryCenter 1206.7064209 2622.1313477 42.8074417 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 137 { Tri 0 { Vertices 73 46 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 69 73 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 17 68 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 68 17 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 63 61 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 69 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 15 17 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 45 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 45 17 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 45 63 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 45 59 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 45 1 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 63 59 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 61 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 59 1 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 46 73 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 47 46 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 73 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 42 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 54 44 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 42 43 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 54 42 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 42 39 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 39 18 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 16 15 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 39 15 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 61 72 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 61 60 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 72 33 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 34 72 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 33 72 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 58 62 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 45 47 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 45 62 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 2 45 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 45 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 0 49 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 60 1 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 60 49 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 58 47 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 67 58 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 32 67 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 32 44 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 32 54 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 55 54 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 33 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 32 33 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 2 74 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 62 56 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 62 58 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 56 58 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 57 58 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 58 67 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 9 67 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 56 57 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 0 48 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 48 31 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 8 7 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 7 67 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 30 10 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 32 30 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 30 31 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 30 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 34 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 34 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 6 57 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 23 57 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 70 57 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 2 57 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 2 70 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 48 0 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 2 71 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 48 51 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 31 51 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 10 50 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 50 10 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 6 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 52 8 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 8 52 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 3 52 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 51 28 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 3 6 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 50 28 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 71 70 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 25 71 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 51 48 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 26 28 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 26 71 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 48 71 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 29 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 26 25 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 27 26 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 40 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 41 4 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 3 28 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 41 40 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 41 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 6 5 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 53 35 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 35 23 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 23 35 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 22 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 24 22 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 29 24 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 21 38 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 5 4 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 38 27 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 41 27 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 4 41 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 12 14 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 117 { Vertices 27 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 118 { Vertices 13 27 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 119 { Vertices 38 20 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 120 { Vertices 35 37 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 121 { Vertices 64 35 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 122 { Vertices 20 38 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 123 { Vertices 53 4 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 124 { Vertices 14 64 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 125 { Vertices 64 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 126 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 127 { Vertices 11 14 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 128 { Vertices 64 66 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 129 { Vertices 64 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 130 { Vertices 36 35 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 131 { Vertices 65 64 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 132 { Vertices 35 36 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 133 { Vertices 19 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 134 { Vertices 19 22 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 135 { Vertices 22 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 136 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 75 { -0.4898682 0.3286133 -1.6836891 -0.5180664 0.4101563 -2.8343468 -0.7460938 -0.0537109 -1.5953407 0.6044922 -0.5368652 0.7656212 0.6217041 -0.4841309 1.6226616 0.3170166 -0.7463379 0.9953270 0.0113525 -0.6831055 0.7030907 0.4643555 -0.6315918 -1.2671356 0.5184326 -0.5981445 -0.9143715 0.1430664 -0.8012695 -1.4335556 0.6243896 0.0732422 -1.3365631 0.7839355 -0.1096191 3.6738434 0.8094482 -0.0095215 2.3240585 0.5146484 0.2531738 3.7019157 0.5706787 -0.4543457 3.0428734 -0.0823975 0.7033691 -4.0189629 -0.6794434 0.5456543 -4.0873833 -0.8218994 -0.1284180 -3.9861298 0.6066895 0.9531250 -4.0861320 -0.4696045 0.3886719 3.7227173 0.1879883 0.4206543 3.7036705 -0.1419678 0.3698730 3.1169357 -0.4610596 -0.0134277 3.0487633 -0.5480957 -0.1804199 1.2017250 -0.6463623 -0.0710449 1.3475914 -0.3929443 0.3884277 1.1445808 0.1201172 0.5080566 0.9127464 0.3735352 0.4326172 1.4859428 0.7391357 0.1083984 0.8482056 -0.3251953 0.5175781 1.3089943 0.6953125 0.2536621 -1.6024818 0.4132080 0.4240723 -1.4116249 0.6638184 0.1528320 -2.4244347 0.6329346 0.3662109 -2.5781975 0.3809814 0.5063477 -2.0640259 -0.5297852 -0.4262695 3.4574203 -0.3999023 -0.3674316 4.0738525 -0.6295166 -0.2180176 3.4655685 -0.1922607 0.5087891 1.8979836 1.0765381 0.4418945 -4.0933990 0.6988525 -0.1508789 1.0749054 0.6297607 0.0546875 1.5368195 0.7172852 -0.0461426 -4.0123215 0.8928223 -0.3498535 -4.1056824 0.4345703 -0.5290527 -2.9393616 -0.7406006 -0.4587402 -2.9458771 -0.0577393 -0.7153320 -3.0010147 0.1442871 -0.8413086 -2.7037659 -0.0693359 0.5810547 -0.5538330 0.0620117 0.6701660 -1.9305611 0.7738037 -0.1018066 -0.5604782 0.4888916 0.3540039 -0.5152359 0.3049316 -0.7668457 0.2826538 0.0883789 -0.6342773 2.1439781 0.7354736 0.1003418 -2.7589035 0.8123779 0.1223145 -2.5436096 -0.4287109 -0.6879883 -1.9437218 -0.2982178 -0.6491699 -1.7280502 0.1350098 -0.6630859 -1.8021126 -0.6030273 0.5332031 -3.1308441 -0.1002197 0.6213379 -3.1082878 -0.5573730 0.3371582 -3.3990211 -0.1352539 -0.6772461 -2.4012527 -0.7822266 0.0339355 -3.2759590 0.0789795 -0.7817383 3.5704575 0.5843506 -0.3322754 4.0856323 0.1538086 -0.6557617 4.1060600 0.6232910 -0.3964844 -1.6561203 -0.6772461 -0.4562988 -3.9932709 -1.0765381 -0.1525879 -4.0877609 -0.5534668 -0.1770020 -0.2741280 -0.2243652 0.5097656 0.1628494 0.4916992 0.6083984 -3.7895088 0.4039307 -0.9528809 -4.1060562 -0.6776123 -0.2463379 -2.1825752 } } phBound { Type BoundBVH AABBMin 1205.5985107 2618.4428711 38.5617714 AABBMax 1212.0169678 2623.6074219 58.9205475 Radius 10.9812 Centroid 1208.8077393 2621.0251465 48.7411575 CG 1207.5839844 2621.7104492 49.4174118 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 3 { Capsule 0 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 1.01411 } Capsule 1 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.946539 } Capsule 2 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.06763 } } ComputePolyNeighbors True Vertices 6 { 1210.1715088 2620.1589355 57.4134560 1207.6116943 2621.8200684 53.9681129 1207.0959473 2622.2749023 52.2778244 1206.8828125 2621.7880859 47.2200394 1206.7832031 2622.2006836 46.0515213 1206.7832031 2622.2006836 39.5758820 } } phBound { Type BoundBVH AABBMin 1169.6629639 2625.0092773 36.7468071 AABBMax 1172.8277588 2628.8476563 53.7410927 Radius 8.85374 Centroid 1171.2453613 2626.9284668 45.2439499 CG 854.9736328 1916.6701660 36.4382172 Margin 0.005 GeometryCenter 1171.2453613 2626.9284668 45.2439499 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 96 { Tri 0 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 28 34 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 33 26 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 33 54 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 45 22 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 22 45 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 34 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 33 47 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 33 22 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 24 41 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 54 33 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 27 26 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 31 32 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 52 32 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 52 31 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 50 26 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 26 50 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 50 40 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 53 25 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 25 53 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 46 42 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 24 25 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 25 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 53 31 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 40 46 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 54 39 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 40 50 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 41 19 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 39 54 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 42 44 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 41 24 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 39 38 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 42 46 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 38 15 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 38 46 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 19 41 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 19 18 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 38 39 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 44 42 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 15 14 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 38 18 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 15 38 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 14 15 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 17 16 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 35 44 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 19 44 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 35 21 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 17 18 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 21 20 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 18 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 20 29 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 16 35 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 16 17 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 21 35 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 35 16 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 37 36 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 29 30 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 37 17 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 20 21 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 9 8 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 20 8 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 9 35 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 36 5 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 30 29 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 9 6 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 6 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 7 8 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 7 51 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 30 8 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 30 48 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 36 37 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 36 48 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 6 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 51 10 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 51 7 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 48 30 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 11 10 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 0 2 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 5 36 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 2 3 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 13 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 11 4 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 10 11 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 3 13 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 0 48 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 10 43 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 43 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 10 49 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 1 43 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 12 49 10 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 55 { 0.2144775 0.5585938 7.0259514 0.8647461 0.3063965 7.9753685 1.0554199 0.1206055 5.8662186 1.1785889 -0.4721680 8.0886955 1.1613770 -0.7780762 5.9914780 1.0622559 -0.7133789 3.1925049 0.6700439 -1.2216797 3.0457230 0.0220947 -1.2268066 3.2648621 -0.2792969 -1.0148926 2.1014977 0.9311523 -0.8557129 1.8237534 -0.4101563 -0.4721680 7.5962219 0.4163818 -1.3007813 6.0537148 0.0261230 -1.1088867 8.4118233 0.9639893 -1.0402832 8.2214737 1.0611572 0.1701660 -1.0654640 0.7882080 0.1840820 -2.6862907 0.4365234 0.4926758 -0.4425507 -0.2080078 0.3483887 -0.6679077 -0.7288818 -0.8886719 -1.8740616 0.3713379 -1.3686523 -1.9837608 -0.6101074 -1.0483398 0.3834229 0.4417725 -1.1047363 0.0309906 1.2999268 -1.2138672 -8.0744324 1.5823975 -0.5708008 -8.3690338 1.0350342 -0.5744629 -5.2456398 0.9372559 0.1999512 -8.4084511 -0.7597656 -0.9863281 -8.0051880 -0.9837646 -0.6154785 -8.4017105 -1.5823975 -1.3598633 -8.4307556 -0.7370605 -0.1142578 0.1137161 -0.3884277 -0.0163574 2.7430840 0.0778809 0.7219238 -7.9385414 -0.6695557 0.4494629 -8.4097481 -0.1796875 -1.5168457 -7.8871918 -0.7181396 -1.9191895 -8.4971428 1.0122070 -0.3906250 -0.3899040 0.8896484 0.2905273 2.1951180 0.2993164 0.4550781 2.0410728 -0.3350830 0.2646484 -3.9990311 -0.7893066 -0.6594238 -4.0555649 -0.4686279 0.3991699 -4.6411362 0.6704102 -1.3137207 -4.8867226 0.9742432 -0.2543945 -4.3483505 -0.3229980 0.1135254 7.4385490 0.9201660 -1.0463867 -2.0690804 1.3920898 -1.4692383 -8.3993759 0.5147705 0.3505859 -4.8540459 0.2611084 -1.7597656 -8.4447556 0.0830078 0.3649902 6.6742973 -0.3778076 -0.2348633 8.4971428 -0.6936035 -0.2001953 -6.4927673 -0.5472412 -0.7202148 3.3522568 -0.3000488 1.9191895 -8.3285751 0.2832031 0.4050293 -7.0383987 -0.3055420 -1.1896973 -5.8524742 } } phBound { Type BoundBVH AABBMin 1169.7397461 2624.5517578 36.0756874 AABBMax 1173.6693115 2628.1943359 73.6293640 Radius 18.967 Centroid 1171.7045898 2626.3730469 54.8525238 CG 1171.6097412 2626.3811035 54.2921906 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 2 { Capsule 0 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 1.1895 } Capsule 1 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.990212 } } ComputePolyNeighbors True Vertices 4 { 1172.3028564 2626.2001953 72.5891418 1171.4378662 2626.6157227 54.1045456 1171.3250732 2626.1550293 53.1773682 1171.5196533 2626.5910645 37.3004074 } } phBound { Type BoundBVH AABBMin 1279.1192627 2643.4987793 36.4995956 AABBMax 1281.2288818 2644.4560547 41.8876266 Radius 2.93248 Centroid 1280.1740723 2643.9775391 39.1936111 CG 965.3314819 1992.4930420 27.2462273 Margin 0.005 GeometryCenter 1280.1740723 2643.9775391 39.1936111 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 97 { Tri 0 { Vertices 18 21 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 18 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 19 21 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 16 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 23 26 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 38 26 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 26 36 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 36 53 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 53 36 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 14 17 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 17 14 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 17 16 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 23 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 22 24 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 26 6 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 25 24 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 40 6 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 21 18 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 16 15 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 16 22 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 15 14 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 14 36 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 14 15 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 34 24 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 22 33 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 43 40 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 43 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 40 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 39 22 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 25 34 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 40 42 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 30 7 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 30 9 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 22 39 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 30 31 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 6 7 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 39 15 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 15 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 8 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 2 49 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 9 8 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 1 39 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 1 49 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 8 0 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 0 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 44 39 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 1 45 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 35 43 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 40 43 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 40 41 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 52 42 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 33 44 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 46 42 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 44 33 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 30 42 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 44 30 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 44 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 31 30 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 34 11 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 33 11 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 54 33 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 52 54 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 47 48 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 11 33 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 11 10 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 10 43 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 10 41 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 51 41 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 54 52 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 41 58 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 10 12 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 51 10 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 50 51 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 50 4 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 12 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 29 12 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 3 12 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 12 13 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 27 28 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 29 28 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 5 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 48 13 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 10 11 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 12 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 3 58 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 3 57 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 57 3 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 3 41 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 41 51 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 55 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 54 55 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 55 54 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 57 54 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 57 56 54 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 59 { 0.9874268 0.1635742 0.3621635 0.9630127 -0.0080566 0.4430885 0.8305664 0.0695801 -0.0728989 -0.5743408 0.1374512 2.2242661 -0.7061768 0.4074707 2.3679886 -0.8497314 0.3674316 2.6498528 0.3009033 0.1181641 -0.7454987 0.3958740 0.2436523 -0.2704277 0.6540527 0.2297363 -0.1863441 0.5780029 0.2980957 0.3629990 -0.5346680 -0.1125488 1.5573235 -0.4656982 -0.3310547 1.4689980 -0.5548096 -0.1203613 1.8834343 -0.6485596 -0.0771484 2.5235977 0.7166748 0.1279297 -2.3021164 0.3854980 -0.1840820 -0.6619949 0.7465820 -0.1247559 -2.2875633 1.0548096 -0.0590820 -2.6458588 0.4621582 -0.3403320 -2.1174774 0.5595703 -0.4787598 -2.4933243 0.8939209 -0.3774414 -2.6468582 0.3277588 -0.4072266 -2.2637749 0.1904297 -0.3854980 -0.7442513 -0.0717773 0.0898438 -2.6057739 0.0705566 -0.3310547 -2.4647141 -0.1022949 -0.0700684 -1.7466202 0.0397949 0.2880859 -2.2413177 -0.8203125 0.1840820 2.3516846 -1.0548096 0.2773438 2.6940155 -0.7521973 0.1701660 1.9406586 0.2717285 0.0385742 -0.0996819 0.4288330 0.1342773 0.1232986 -0.5522461 0.1694336 2.4558144 -0.0783691 -0.4187012 0.9220695 -0.3525391 -0.2978516 0.4669609 -0.4764404 -0.1391602 1.0612946 0.5329590 0.2854004 -2.3341370 0.1147461 0.4785156 -2.6940155 0.0156250 0.3640137 -2.5669327 0.4288330 -0.1791992 -0.2435646 -0.0867920 0.2380371 -0.5641861 -0.3536377 0.1958008 1.5446815 0.1929932 0.1821289 -0.2148705 -0.4290771 0.0871582 0.8165245 0.2762451 -0.1071777 -0.1233826 0.6202393 0.0051270 0.4242096 0.1804199 -0.0864258 0.8131142 -0.0919189 -0.3505859 2.3603363 -0.2854004 -0.4033203 2.2873955 0.6225586 -0.1149902 -0.2769165 -0.9968262 0.4235840 2.3064423 -0.5422363 0.1879883 1.6780891 0.0059814 0.2048340 1.1050453 0.6143799 0.4013672 -2.6100960 0.1380615 0.0397949 1.1467934 0.0567627 -0.1350098 2.5196915 0.0397949 0.0546875 2.4557304 -0.2811279 0.2885742 2.4622192 -0.1899414 0.2106934 2.0561829 } } phBound { Type BoundBVH AABBMin 1278.5772705 2642.4101563 36.4275093 AABBMax 1282.2041016 2645.0817871 47.9153099 Radius 6.16971 Centroid 1280.3906250 2643.7460938 42.1714096 CG 1280.3106689 2643.7749023 41.5076447 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 6 { Capsule 0 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.256525 } Capsule 1 { MaterialIndex 0 CenterTop 8 CenterBottom 9 Radius 0.390732 } Capsule 2 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.199089 } Capsule 3 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.16781 } Capsule 4 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.29565 } Capsule 5 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.315961 } } ComputePolyNeighbors True Vertices 12 { 1279.6164551 2644.0104980 43.0382080 1279.5622559 2643.8713379 47.5891571 1280.9741211 2644.0788574 40.0219154 1281.7456055 2644.6359863 44.3663673 1278.8620605 2644.5981445 42.4928780 1279.5944824 2644.1186523 41.0473747 1280.9302979 2643.7763672 39.7992096 1281.0709229 2642.7045898 41.7331238 1279.8209229 2644.0717773 42.5989494 1280.5360107 2643.9545898 36.8641396 1280.4915771 2643.9645996 38.7030907 1281.0894775 2644.0573730 39.8520622 } } phBound { Type BoundBVH AABBMin 1313.2006836 2654.5864258 36.2131729 AABBMax 1315.5554199 2656.4902344 48.9969559 Radius 6.56876 Centroid 1314.3780518 2655.5383301 42.6050644 CG 1314.4262695 2655.3120117 41.7794571 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 2 { Capsule 0 { MaterialIndex 1 CenterTop 2 CenterBottom 3 Radius 0.6345 } Capsule 1 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.452687 } } ComputePolyNeighbors True Vertices 4 { 1314.5205078 2655.7429199 41.0833588 1313.8723145 2655.2492676 48.4975281 1314.7878418 2655.7382813 40.6385422 1314.3527832 2655.7846680 36.9174271 } } phBound { Type BoundBVH AABBMin 1313.1971436 2654.8996582 36.6103096 AABBMax 1315.4050293 2656.3684082 41.9220276 Radius 2.96843 Centroid 1314.3010254 2655.6340332 39.2661667 CG 1047.0867920 2115.8569336 25.8561230 Margin 0.005 GeometryCenter 1314.3010254 2655.6340332 39.2661667 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 115 { Tri 0 { Vertices 39 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 56 64 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 56 39 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 64 56 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 24 57 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 57 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 12 24 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 23 24 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 23 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 14 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 13 1 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 9 39 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 39 9 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 39 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 66 2 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 12 56 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 2 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 13 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 55 2 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 2 55 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 65 8 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 55 66 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 65 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 54 55 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 8 7 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 44 38 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 36 37 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 38 49 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 51 36 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 36 51 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 48 6 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 9 51 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 10 7 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 35 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 38 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 38 43 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 48 49 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 45 46 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 48 43 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 6 48 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 46 42 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 50 14 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 0 61 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 1 20 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 20 1 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 19 50 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 60 20 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 60 47 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 34 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 45 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 43 35 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 34 20 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 45 34 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 46 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 18 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 54 67 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 0 55 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 0 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 0 68 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 49 5 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 49 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 6 42 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 46 18 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 16 18 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 47 60 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 68 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 60 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 7 27 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 54 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 7 10 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 10 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 5 25 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 40 42 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 40 3 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 58 54 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 27 7 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 15 18 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 58 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 25 26 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 67 58 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 18 15 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 41 40 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 26 28 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 26 25 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 52 28 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 22 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 5 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 3 41 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 3 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 30 58 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 67 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 67 29 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 16 68 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 29 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 17 16 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 17 41 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 52 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 32 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 31 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 31 32 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 31 28 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 53 63 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 52 53 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 62 29 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 62 31 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 62 69 29 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 70 { -0.2324219 0.5246582 -2.2106934 -0.3408203 0.5881348 -2.2474136 -0.6809082 0.3540039 -2.2719727 0.8238525 -0.1464844 0.1669388 0.5623779 -0.0969238 2.0525551 0.6303711 -0.2773438 -0.0122795 0.6065674 -0.1804199 -1.9238358 -0.1031494 -0.2224121 -1.1650658 -0.3587646 -0.1015625 -1.6138725 -0.2929688 -0.3869629 -2.0703049 -0.0068359 -0.3925781 -1.7840118 -0.8709717 0.5124512 -2.5474815 -0.8433838 0.3359375 -2.5114937 -0.5411377 0.6076660 -2.4947968 -0.3397217 0.7343750 -2.5526695 0.6718750 0.4458008 0.5815430 0.5476074 0.4824219 0.0354652 0.5661621 0.4606934 2.1634445 0.8549805 0.2070313 -0.3925934 0.3809814 0.6933594 -2.5700188 0.3121338 0.5742188 -2.5429459 0.3679199 0.5439453 -2.6558571 0.3205566 -0.2326660 2.0681992 -1.0893555 0.1384277 -2.5507278 -0.9678955 0.0090332 -2.5541306 0.4425049 -0.2827148 0.6917801 0.2613525 -0.2250977 0.7457619 0.0291748 -0.0832520 0.0094452 0.0255127 -0.1076660 1.7862854 0.0985107 0.5087891 1.9235153 0.0644531 0.3503418 1.2756310 -0.0361328 0.2937012 1.9776611 -0.0709229 0.1965332 1.8741531 1.1040039 0.1945801 -2.5820122 0.6069336 0.4506836 -2.5825806 1.0944824 -0.0312500 -2.5653992 0.0401611 -0.5659180 -2.4875832 0.0479736 -0.7343750 -2.5953064 0.7519531 -0.2651367 -2.5216255 -0.8780518 -0.4350586 -2.5683136 0.8834229 -0.0280762 0.1688042 0.7559814 0.1848145 1.8661270 0.6807861 -0.0461426 -1.9099731 0.9282227 -0.0639648 -2.5203285 0.6955566 -0.5161133 -2.5647469 0.8869629 0.1147461 -2.5294075 0.7008057 0.0979004 -2.1988602 0.5931396 0.2702637 -2.3765335 0.7435303 -0.0871582 -2.3349533 0.6435547 -0.2316895 -2.3569183 -0.0555420 0.7192383 -2.5889854 0.0642090 -0.4057617 -2.1047516 0.1397705 -0.2319336 2.1103516 0.0731201 -0.1882324 2.1937561 -0.2100830 -0.0708008 -1.1700897 -0.3529053 0.2612305 -1.7764740 -0.9149170 -0.0314941 -2.4562149 -1.1038818 -0.0405273 -2.5605316 0.0804443 0.0246582 0.6587906 0.1989746 0.5654297 2.0926781 0.2937012 0.4858398 -2.1354752 0.0516357 0.5720215 -2.1961021 -0.0280762 0.5314941 2.5219574 -0.0814209 0.2739258 2.1596336 -1.0871582 -0.2556152 -2.5688019 -0.5447998 -0.1674805 -2.0421753 -0.8348389 -0.0458984 -2.3059349 0.0782471 0.2832031 -0.0689354 0.2745361 0.4685059 0.0384636 0.0859375 0.6420898 2.6558609 } } phBound { Type BoundBVH AABBMin 1343.9906006 2638.0056152 43.1940994 AABBMax 1362.8453369 2656.8605957 62.0489197 Radius 16.3288 Centroid 1353.4179688 2647.4331055 52.6215096 CG 1353.3934326 2647.3994141 52.6206741 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 52 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Sphere 0 { MaterialIndex 0 Center 0 Radius 9.42741 } } ComputePolyNeighbors True Vertices 1 { 1353.4179688 2647.4331055 52.6215096 } } phBound { Type BoundBVH AABBMin 1344.6409912 2641.4343262 35.2205353 AABBMax 1361.0445557 2651.7189941 57.4730911 Radius 14.7481 Centroid 1352.8427734 2646.5766602 46.3468132 CG 1352.8488770 2646.5429688 45.4214783 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 25 { Capsule 0 { MaterialIndex 1 CenterTop 48 CenterBottom 49 Radius 0.246229 } Capsule 1 { MaterialIndex 0 CenterTop 46 CenterBottom 47 Radius 0.280098 } Capsule 2 { MaterialIndex 1 CenterTop 44 CenterBottom 45 Radius 0.24768 } Capsule 3 { MaterialIndex 1 CenterTop 42 CenterBottom 43 Radius 0.518939 } Capsule 4 { MaterialIndex 1 CenterTop 40 CenterBottom 41 Radius 0.78395 } Capsule 5 { MaterialIndex 1 CenterTop 38 CenterBottom 39 Radius 0.389333 } Capsule 6 { MaterialIndex 0 CenterTop 36 CenterBottom 37 Radius 0.32447 } Capsule 7 { MaterialIndex 1 CenterTop 34 CenterBottom 35 Radius 0.358077 } Capsule 8 { MaterialIndex 1 CenterTop 32 CenterBottom 33 Radius 0.802362 } Capsule 9 { MaterialIndex 0 CenterTop 30 CenterBottom 31 Radius 0.318746 } Capsule 10 { MaterialIndex 1 CenterTop 28 CenterBottom 29 Radius 0.591123 } Capsule 11 { MaterialIndex 0 CenterTop 26 CenterBottom 27 Radius 0.998398 } Capsule 12 { MaterialIndex 0 CenterTop 24 CenterBottom 25 Radius 0.637699 } Capsule 13 { MaterialIndex 0 CenterTop 22 CenterBottom 23 Radius 0.456049 } Capsule 14 { MaterialIndex 0 CenterTop 20 CenterBottom 21 Radius 0.342232 } Capsule 15 { MaterialIndex 0 CenterTop 18 CenterBottom 19 Radius 0.334973 } Capsule 16 { MaterialIndex 0 CenterTop 16 CenterBottom 17 Radius 0.435733 } Capsule 17 { MaterialIndex 0 CenterTop 14 CenterBottom 15 Radius 0.213677 } Capsule 18 { MaterialIndex 1 CenterTop 12 CenterBottom 13 Radius 1.79841 } Capsule 19 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.376947 } Capsule 20 { MaterialIndex 0 CenterTop 8 CenterBottom 9 Radius 0.309382 } Capsule 21 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.282017 } Capsule 22 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.19822 } Capsule 23 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.287828 } Capsule 24 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.548363 } } ComputePolyNeighbors True Vertices 50 { 1360.1331787 2649.8876953 56.7218933 1353.9884033 2647.0688477 45.2984924 1353.7416992 2648.3793945 47.3377457 1353.2592773 2648.1479492 50.2227707 1356.6064453 2645.5571289 48.0617790 1354.9516602 2647.5063477 46.4825630 1353.9187012 2648.2424316 45.2029877 1353.7937012 2648.3063965 46.8339844 1358.0650635 2649.1835938 47.7954330 1355.3294678 2647.2846680 43.4418411 1353.2994385 2646.3872070 43.9277802 1352.3653564 2644.7895508 46.3161011 1353.9010010 2646.7702637 43.7999878 1351.3094482 2646.0798340 48.2010040 1352.3476563 2644.8073730 46.7875824 1351.5493164 2645.2365723 49.7539825 1352.9991455 2646.9951172 44.9342957 1349.5067139 2647.3818359 53.0617218 1350.6032715 2646.4572754 46.3887367 1346.3513184 2642.9128418 50.5856285 1350.2917480 2646.3486328 45.9091911 1346.3337402 2643.2197266 46.4149666 1350.2365723 2646.9323730 45.8116684 1345.2746582 2646.3410645 47.6158600 1349.4788818 2647.2409668 48.4979477 1345.9383545 2644.6062012 52.8256454 1354.0292969 2647.4450684 45.8503418 1353.7910156 2647.1301270 42.2449875 1352.8732910 2646.9189453 41.4859848 1350.6403809 2646.5078125 46.0904541 1354.5173340 2651.1711426 44.4829865 1353.3596191 2649.0808105 42.3858948 1357.0086670 2646.0397949 45.5987968 1354.5831299 2646.7473145 41.1755867 1351.3607178 2646.5043945 42.9955864 1348.7164307 2647.2504883 43.3396034 1354.2036133 2645.4982910 43.2595711 1353.9160156 2646.3151855 42.2510414 1352.7729492 2650.0983887 45.0281143 1353.3806152 2647.5803223 40.0900497 1353.6820068 2647.0610352 36.0286827 1353.5921631 2646.9350586 40.9610329 1352.6802979 2646.2207031 41.7627449 1351.7696533 2644.0664063 41.7392082 1354.4830322 2644.0983887 43.5356636 1354.1248779 2645.6823730 43.0409813 1354.4462891 2644.1496582 46.0413551 1354.1445313 2645.5856934 43.4230080 1355.1152344 2641.8347168 46.3783112 1354.5185547 2643.8103027 43.5336456 } } phBound { Type BoundBVH AABBMin 1352.3409424 2645.9538574 36.0988388 AABBMax 1355.3870850 2648.5366211 41.2025032 Radius 3.24026 Centroid 1353.8640137 2647.2451172 38.6506729 CG 1011.6416626 1978.7291260 32.1150169 Margin 0.005 GeometryCenter 1353.8640137 2647.2451172 38.6506729 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 113 { Tri 0 { Vertices 43 62 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 62 43 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 53 62 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 45 46 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 43 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 46 45 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 44 11 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 43 65 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 11 44 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 65 12 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 65 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 2 1 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 18 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 18 21 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 21 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 53 19 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 19 53 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 20 53 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 53 26 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 53 46 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 22 16 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 15 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 23 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 23 21 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 34 24 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 21 26 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 14 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 14 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 0 59 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 58 56 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 58 55 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 14 59 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 54 55 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 29 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 29 14 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 29 42 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 14 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 54 56 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 50 47 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 24 50 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 50 24 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 49 50 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 50 61 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 50 8 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 50 69 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 56 28 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 28 9 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 29 9 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 28 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 49 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 49 8 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 26 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 5 46 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 34 26 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 24 34 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 13 14 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 47 48 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 47 24 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 52 48 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 51 48 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 33 42 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 33 29 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 5 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 46 11 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 3 11 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 11 13 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 64 13 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 42 41 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 41 42 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 35 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 35 25 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 52 34 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 25 63 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 52 63 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 63 68 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 51 33 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 30 33 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 4 6 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 6 64 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 4 3 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 64 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 5 4 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 5 27 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 57 25 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 25 57 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 6 41 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 39 41 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 71 40 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 38 39 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 39 38 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 39 27 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 27 38 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 67 57 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 30 51 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 33 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 41 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 68 60 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 30 60 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 41 32 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 36 37 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 72 41 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 71 41 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 37 66 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 32 70 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 70 32 31 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 73 { 0.2640381 -0.6489258 -2.2667122 0.1887207 -0.8891602 -2.0709152 0.2980957 -1.2912598 -2.3516808 -0.8206787 -0.4934082 0.4850845 -0.7999268 -0.6030273 0.9340706 -0.8923340 -0.2509766 0.0428696 -0.5480957 -0.8420410 0.8139763 1.3110352 1.0771484 -2.4993439 0.6507568 0.8469238 -2.5322113 0.8774414 0.5195313 -2.2003555 1.5230713 0.8295898 -2.4655418 -0.3673096 -0.7102051 -1.3182678 -0.1381836 -0.6945801 -1.8589249 -0.0581055 -0.6513672 -0.9903870 0.4172363 -0.6071777 -1.8775368 -0.8074951 0.7370605 -2.4862595 -0.4687500 0.6276855 -2.5012131 -0.6663818 1.1772461 -2.5518341 -1.1333008 0.4282227 -2.4861832 -1.5230713 0.0695801 -2.5118828 -0.9360352 0.1701660 -2.1276169 -0.6755371 0.5278320 -1.9234085 0.0162354 0.4553223 -2.4187355 -0.4321289 0.3571777 -2.0301056 -0.0395508 0.2548828 -1.6229401 -0.8010254 0.2021484 0.4704399 -0.8514404 0.1896973 -1.2300262 -0.9946289 0.0334473 1.6554108 1.1999512 0.3032227 -2.4393768 0.5335693 0.2099609 -1.8083000 0.2598877 0.3383789 0.8720779 0.2885742 0.3574219 2.0983238 0.5151367 0.2121582 1.2258949 0.3577881 -0.1828613 0.9121094 -0.5145264 0.4936523 -1.2502785 -0.8172607 0.4516602 -0.9663200 0.7534180 -0.1162109 2.2677193 0.8194580 -0.2507324 1.9479332 -1.1243896 -0.1694336 2.2900696 -0.7265625 -0.7451172 1.7321243 -1.2065430 -0.3425293 2.5518303 0.3620605 -0.5939941 1.2597733 0.2988281 -0.4167480 -0.9980164 -0.7589111 -0.7763672 -2.3568993 -0.4780273 -0.7719727 -2.1091576 -0.7108154 -0.5385742 -2.0355568 -0.8280029 -0.2863770 -1.3301849 0.3612061 0.3061523 -1.5762100 0.2180176 0.1594238 -0.7255898 0.5297852 0.6579590 -2.4808083 0.4619141 0.5253906 -2.0139847 0.1354980 0.2683105 -0.3281593 -0.2652588 0.4367676 -0.3182678 -0.9812012 -0.0839844 -1.7613373 0.4465332 -0.1650391 -2.0576782 0.5577393 -0.3583984 -1.8514442 0.4981689 -0.0407715 -2.2642975 -0.6356201 0.4516602 1.2008934 1.2744141 -0.5432129 -2.3771477 1.1009521 -0.8046875 -2.3464622 -0.1650391 0.3735352 1.8822823 0.2315674 0.5595703 -2.3963852 -1.1658936 -0.1625977 -2.2600899 -0.4481201 0.3742676 0.9329033 -0.3757324 -0.7001953 0.5035400 -0.0889893 -0.9538574 -2.3121147 1.0631104 -0.8278809 2.5437317 -0.6663818 0.4636230 2.0404587 -0.1867676 0.5163574 1.3822021 -0.0053711 1.2915039 -2.5086136 0.4449463 0.0915527 2.3421745 -0.3420410 -0.7641602 2.2845383 0.5941162 -0.8186035 2.4244919 } } phBound { Type BoundBVH AABBMin 1371.0076904 2671.5319824 37.1011963 AABBMax 1372.8273926 2673.5507813 43.7805481 Radius 3.60557 Centroid 1371.9174805 2672.5415039 40.4408722 CG 1020.2710571 1988.8768311 35.0391006 Margin 0.005 GeometryCenter 1371.9174805 2672.5415039 40.4408722 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 137 { Tri 0 { Vertices 69 73 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 68 17 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 63 61 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 45 63 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 17 68 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 45 17 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 73 46 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 45 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 69 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 15 17 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 63 59 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 61 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 45 59 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 45 1 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 59 1 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 42 43 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 42 39 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 73 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 42 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 46 73 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 54 44 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 54 42 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 47 46 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 16 15 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 39 18 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 39 15 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 61 72 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 61 60 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 72 33 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 34 72 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 33 72 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 45 47 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 45 62 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 58 62 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 62 56 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 62 58 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 2 74 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 56 58 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 57 58 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 60 1 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 0 49 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 2 45 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 45 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 56 57 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 0 48 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 48 0 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 58 47 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 67 58 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 32 44 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 32 54 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 55 54 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 33 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 32 33 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 60 49 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 58 67 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 9 67 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 32 67 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 7 67 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 30 10 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 32 30 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 30 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 30 31 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 34 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 34 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 48 31 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 2 57 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 70 57 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 6 57 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 6 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 8 52 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 52 8 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 8 7 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 10 50 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 48 51 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 31 51 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 50 10 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 2 70 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 2 71 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 23 57 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 48 71 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 51 48 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 3 52 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 50 28 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 3 6 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 3 28 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 40 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 41 4 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 29 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 71 70 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 25 71 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 26 28 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 51 28 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 26 71 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 26 25 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 27 26 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 41 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 41 40 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 6 5 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 53 35 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 35 23 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 22 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 23 35 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 29 24 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 24 22 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 21 38 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 5 4 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 4 41 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 12 14 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 41 27 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 27 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 117 { Vertices 38 27 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 118 { Vertices 38 20 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 119 { Vertices 13 27 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 120 { Vertices 35 37 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 121 { Vertices 19 22 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 122 { Vertices 64 35 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 123 { Vertices 20 38 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 124 { Vertices 53 4 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 125 { Vertices 14 64 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 126 { Vertices 11 14 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 127 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 128 { Vertices 64 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 129 { Vertices 64 66 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 130 { Vertices 64 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 131 { Vertices 65 64 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 132 { Vertices 36 35 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 133 { Vertices 35 36 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 134 { Vertices 19 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 135 { Vertices 22 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 136 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 75 { -0.4500732 0.4206543 -1.3919334 -0.4069824 0.3742676 -2.3196907 -0.7342529 0.1804199 -1.3086815 0.1317139 -0.2314453 0.6805878 0.1198730 -0.1069336 1.3639793 -0.1475830 -0.3151855 0.8639336 -0.3634033 -0.2338867 0.6104927 0.0876465 -0.4829102 -0.9471893 0.1221924 -0.4316406 -0.6643639 -0.1934814 -0.5686035 -1.0853386 0.3613281 0.0317383 -1.0413628 0.2379150 0.3618164 2.9892044 0.3356934 0.2990723 1.9035110 0.0988770 0.7036133 2.9742050 0.0257568 0.0700684 2.4962997 0.0467529 0.3977051 -3.2653961 -0.4534912 0.3864746 -3.3396759 -0.7083740 -0.1042480 -3.2212219 0.6440430 0.4492188 -3.3012123 -0.6501465 1.0092773 2.9325790 -0.1242676 0.9008789 2.9481888 -0.3701172 0.8679199 2.4653854 -0.6975098 0.6235352 2.4201889 -0.7224121 0.3234863 0.9484138 -0.7834473 0.4438477 1.0529938 -0.4808350 0.7336426 0.8728104 -0.0419922 0.7014160 0.7050743 0.1180420 0.6491699 1.1815491 0.3666992 0.2570801 0.7108879 -0.4079590 0.8381348 0.9993248 0.4654541 0.1325684 -1.2625618 0.2700195 0.3420410 -1.1351280 0.4547119 -0.0231934 -1.9153442 0.4805908 0.1350098 -2.0541077 0.2889404 0.3474121 -1.6644554 -0.8536377 0.3544922 2.7710648 -0.7651367 0.4367676 3.2671318 -0.8897705 0.5388184 2.7588234 -0.3297119 0.8640137 1.4779472 0.9099121 -0.0473633 -3.2496872 0.2722168 0.0842285 0.9073982 0.2403564 0.3061523 1.2601128 0.5230713 -0.3505859 -3.1706123 0.6031494 -0.6337891 -3.2164230 0.1558838 -0.5649414 -2.2939758 -0.7559814 -0.2751465 -2.3626442 -0.2679443 -0.6188965 -2.3557053 -0.1470947 -0.7285156 -2.0993042 -0.1145020 0.6486816 -0.4831619 0.0654297 0.5534668 -1.5844650 0.4104004 -0.0573730 -0.4011269 0.2773438 0.3623047 -0.4091873 -0.1312256 -0.4008789 0.2942009 -0.3533936 -0.0654297 1.7645454 0.5145264 -0.1127930 -2.1760330 0.5705566 -0.0888672 -2.0012550 -0.5994873 -0.4165039 -1.5297775 -0.4976807 -0.3903809 -1.3531647 -0.1560059 -0.4956055 -1.3898964 -0.4361572 0.4580078 -2.5693550 -0.0225830 0.4287109 -2.5320129 -0.4290771 0.2675781 -2.7688217 -0.3464355 -0.5129395 -1.8820839 -0.6738281 0.0869141 -2.6615906 -0.4514160 -0.0354004 2.9155388 0.0175781 0.2683105 3.3234520 -0.3891602 0.1025391 3.3396759 0.2775879 -0.3691406 -1.2661324 -0.6612549 -0.3916016 -3.1980591 -0.9097900 -0.0825195 -3.3137589 -0.6634521 0.1784668 -0.2333908 -0.2816162 0.6960449 0.0873871 0.4700928 0.2312012 -3.0467491 0.0939941 -1.0095215 -3.2013245 -0.6949463 -0.0437012 -1.7626076 } } phBound { Type BoundBVH AABBMin 1370.4146729 2670.5378418 36.9242477 AABBMax 1374.9036865 2674.9445801 53.6515427 Radius 8.9355 Centroid 1372.6591797 2672.7412109 45.2878952 CG 1372.0233154 2672.8686523 45.8018723 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 3 { Capsule 0 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.827012 } Capsule 1 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.771908 } Capsule 2 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.870656 } } ComputePolyNeighbors True Vertices 6 { 1373.4250488 2672.0063477 52.4377747 1371.8933105 2673.4760742 49.4420013 1371.6512451 2673.7663574 48.0331688 1371.5970459 2672.9162598 44.0064201 1371.6524658 2673.1423340 43.0388031 1371.9261475 2672.4890137 37.8556213 } } phBound { Type BoundBVH AABBMin 1391.3548584 2643.4353027 48.5690994 AABBMax 1399.1990967 2650.3225098 62.3519821 Radius 8.64485 Centroid 1395.2769775 2646.8789063 55.4605408 CG 1395.2867432 2646.8710938 55.4605827 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 3.07199 } } ComputePolyNeighbors True Vertices 2 { 1394.9821777 2646.9108887 51.8844414 1395.5717773 2646.8469238 59.0366402 } } phBound { Type BoundBVH AABBMin 1393.9271240 2646.2966309 43.6325989 AABBMax 1395.9029541 2647.7814941 49.2492065 Radius 3.06818 Centroid 1394.9150391 2647.0390625 46.4409027 CG 1394.9364014 2647.1577148 46.4410439 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.643259 } } ComputePolyNeighbors True Vertices 2 { 1394.7003174 2647.0632324 44.3382454 1395.1297607 2647.0148926 48.5435600 } } phBound { Type BoundBVH AABBMin 1393.9539795 2646.1496582 44.1176682 AABBMax 1395.6982422 2647.8059082 48.0205917 Radius 2.29229 Centroid 1394.8261719 2646.9777832 46.0691299 CG 1035.3297119 1963.6107178 33.6222725 Margin 0.005 GeometryCenter 1394.8261719 2646.9777832 46.0691299 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 109 { Tri 0 { Vertices 68 52 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 70 63 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 27 70 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 45 14 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 50 45 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 63 52 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 63 64 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 50 51 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 51 64 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 1 64 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 51 14 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 4 1 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 21 13 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 13 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 20 19 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 20 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 56 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 31 56 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 57 17 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 45 22 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 13 14 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 20 29 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 17 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 13 3 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 13 29 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 4 14 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 26 28 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 48 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 53 54 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 54 47 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 46 47 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 46 55 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 46 28 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 53 55 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 48 64 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 46 48 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 46 65 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 17 57 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 16 15 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 18 24 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 24 18 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 39 43 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 25 43 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 53 40 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 43 39 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 24 39 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 49 17 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 16 38 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 38 16 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 42 39 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 42 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 49 38 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 4 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 3 2 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 1 0 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 37 3 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 29 31 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 29 36 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 2 3 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 2 11 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 62 11 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 62 3 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 36 34 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 0 65 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 41 55 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 41 40 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 40 41 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 6 65 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 6 41 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 0 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 7 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 36 31 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 49 60 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 60 59 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 58 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 38 58 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 42 58 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 44 58 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 44 42 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 61 11 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 69 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 7 69 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 23 41 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 5 23 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 5 10 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 44 23 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 5 69 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 10 5 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 62 37 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 33 71 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 33 37 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 32 33 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 59 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 34 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 32 35 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 35 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 44 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 44 41 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 35 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 35 58 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 66 67 35 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 72 { -0.5003662 -0.1210938 0.1192703 -0.4993896 -0.5476074 -0.5395813 -0.3334961 -0.5278320 -0.3161469 -0.1292725 -0.5898438 -0.3529549 -0.4044189 -0.6516113 -0.5384407 -0.3658447 0.6110840 1.3939857 -0.4082031 0.3234863 0.5093651 -0.4508057 0.1257324 0.5036697 -0.4086914 0.3940430 1.7179565 -0.2583008 0.5791016 1.7562027 -0.3378906 0.6667480 1.6280899 -0.1733398 -0.3735352 1.3652115 -0.2864990 -0.2932129 1.3080177 -0.0629883 -0.6608887 -1.2103615 -0.1696777 -0.6262207 -0.8328552 0.4443359 0.2961426 -1.7654953 0.4179688 0.3381348 -1.3102379 0.4438477 0.1018066 -1.3198280 0.5552979 0.4838867 -1.7939720 0.1611328 -0.8020020 -1.9514618 0.0800781 -0.6679688 -1.4068756 -0.0577393 -0.8281250 -1.7095642 -0.2266846 -0.6896973 -1.7638779 -0.3222656 0.5095215 1.2347603 0.3275146 0.5466309 -1.5067520 0.2413330 0.6140137 -1.6954155 -0.8721924 0.5192871 -1.5967979 -0.7569580 0.2656250 -1.5485382 -0.7218018 0.3620605 -1.3062210 0.2622070 -0.4846191 -0.9727173 0.4128418 -0.2951660 -1.7325249 0.4830322 -0.1333008 -1.3148537 0.6713867 -0.5056152 1.5764732 0.4503174 -0.5979004 1.9514618 0.7437744 -0.4528809 1.1603012 0.8720703 -0.0651855 1.1026917 0.5998535 -0.4072266 0.8061180 0.3483887 -0.5493164 0.4018745 0.4378662 0.3527832 -0.6354408 0.2733154 0.5109863 -0.9234390 -0.1596680 0.7131348 -0.9604301 0.1524658 0.6833496 0.8705635 0.1437988 0.6157227 -0.6230316 0.2169189 0.7443848 -1.5444031 0.4528809 0.7255859 1.5728188 -0.3951416 -0.6984863 -1.7157974 -0.6302490 0.4704590 -1.1502304 -0.5737305 0.6721191 -1.3966255 -0.5052490 0.1184082 -1.2290649 0.5450439 0.0671387 -0.9901047 -0.6090088 -0.5278320 -1.5281563 -0.5688477 -0.3583984 -0.8267403 -0.5999756 -0.3432617 -1.4636497 -0.0930176 0.8281250 -1.4881668 -0.2961426 0.6831055 -1.4855919 -0.4105225 0.6799316 -1.2168961 0.4923096 -0.0573730 -1.6921158 0.5505371 0.2087402 -1.8438530 0.5343018 0.5263672 1.1956711 0.6839600 0.0664063 0.8119316 0.5634766 0.0776367 -0.0058441 -0.1240234 -0.5183105 1.6745529 -0.0173340 -0.6010742 1.6569290 -0.5463867 -0.1662598 -1.5326500 -0.5238037 0.1137695 -0.9092331 -0.4028320 0.3857422 -0.2957039 0.7600098 0.0651855 1.5738373 0.8131104 -0.2167969 1.5725784 -0.5374756 -0.2416992 -1.6556091 -0.4555664 0.1381836 1.2785225 -0.6313477 0.1342773 -1.8085403 0.1964111 -0.6372070 1.6253357 } } phBound { Type BoundBVH AABBMin 1421.9035645 2608.4802246 43.7226906 AABBMax 1426.4060059 2613.6865234 64.4651184 Radius 10.9273 Centroid 1424.1547852 2611.0834961 54.0939026 CG 1424.2558594 2611.3232422 52.7504120 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 2 { Capsule 0 { MaterialIndex 1 CenterTop 2 CenterBottom 3 Radius 0.9899 } Capsule 1 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.706249 } } ComputePolyNeighbors True Vertices 4 { 1424.5295410 2611.5471191 51.6322174 1422.9755859 2609.5739746 63.6291351 1424.9818115 2611.6374512 50.9264069 1424.6041260 2612.2297363 44.8192215 } } phBound { Type BoundBVH AABBMin 1422.8477783 2610.8964844 44.3047867 AABBMax 1426.2630615 2613.1428223 53.0587234 Radius 4.83067 Centroid 1424.5554199 2612.0195313 48.6817551 CG 1057.7933350 1939.6697998 32.8536148 Margin 0.005 GeometryCenter 1424.5554199 2612.0195313 48.6817551 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 115 { Tri 0 { Vertices 39 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 56 64 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 56 39 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 64 56 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 24 57 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 57 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 12 24 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 12 56 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 23 24 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 23 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 14 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 9 39 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 39 9 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 39 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 66 2 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 2 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 13 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 13 1 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 55 2 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 2 55 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 65 8 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 55 66 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 65 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 54 55 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 8 7 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 36 37 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 44 38 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 38 49 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 51 36 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 36 51 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 48 6 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 9 51 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 10 7 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 38 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 35 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 38 43 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 48 49 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 48 43 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 45 46 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 6 48 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 46 42 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 50 14 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 0 61 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 1 20 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 20 1 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 19 50 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 60 20 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 60 47 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 34 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 45 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 43 35 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 34 20 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 45 34 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 46 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 18 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 54 67 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 0 55 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 0 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 0 68 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 49 5 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 49 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 46 18 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 16 18 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 47 60 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 68 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 60 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 7 27 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 58 54 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 7 10 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 10 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 5 25 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 6 42 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 40 42 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 40 3 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 54 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 27 7 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 15 18 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 58 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 25 26 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 67 58 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 18 15 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 41 40 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 26 28 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 26 25 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 52 28 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 52 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 5 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 22 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 3 41 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 30 58 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 67 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 67 29 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 16 68 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 29 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 17 16 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 3 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 31 28 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 31 32 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 53 63 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 32 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 31 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 52 53 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 17 41 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 62 29 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 62 31 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 62 69 29 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 70 { -0.4497070 0.7377930 -3.6126900 -0.6226807 0.8295898 -3.6733437 -1.1210938 0.4321289 -3.7699242 1.0775146 -0.5471191 0.2711029 0.5112305 -0.7885742 3.3364525 0.8072510 -0.7443848 -0.0536270 0.9147949 -0.3044434 -3.1657143 -0.2449951 -0.5654297 -1.9882317 -0.6197510 -0.3383789 -2.7265701 -0.4462891 -0.7033691 -3.5027390 -0.0242920 -0.7236328 -3.0130768 -1.4127197 0.6984863 -4.2152786 -1.3516846 0.4223633 -4.1765137 -0.9161377 0.8752441 -4.0908737 -0.6135254 1.1030273 -4.1534119 0.7366943 0.2902832 1.0106621 0.5838623 0.4165039 0.1133308 0.4412842 0.0595703 3.5881042 1.1293945 0.0898438 -0.5959702 0.5126953 1.1232910 -4.1293678 0.4177246 0.9267578 -4.1055946 0.5173340 0.9033203 -4.2894363 0.1503906 -1.0285645 3.3256493 -1.7071533 0.0947266 -4.2851181 -1.5026855 -0.0917969 -4.2972717 0.4584961 -0.8815918 1.0807686 0.1655273 -0.8210449 1.1616783 -0.1518555 -0.5146484 -0.0416031 -0.2998047 -0.8247070 2.8573265 -0.2713623 0.1179199 3.1649055 -0.2524414 -0.0322266 2.0838661 -0.4592285 -0.2390137 3.2155571 -0.4931641 -0.3776855 3.0315781 1.6966553 0.4335938 -4.1540909 0.8939209 0.7744141 -4.1624641 1.7076416 0.0798340 -4.1559792 0.1269531 -0.8796387 -4.1802940 0.1679688 -1.1230469 -4.3769684 1.1997070 -0.3276367 -4.1413918 -1.3089600 -0.7675781 -4.3689995 1.1556396 -0.3571777 0.2937965 0.7937012 -0.3015137 3.0829124 1.0130615 -0.0898438 -3.1203270 1.4493408 0.0039063 -4.0999222 1.1456299 -0.7165527 -4.2478333 1.3647461 0.2773438 -4.0954666 1.0504150 0.1796875 -3.5725746 0.8770752 0.4619141 -3.8496208 1.1500244 -0.0815430 -3.8146362 1.0137939 -0.3134766 -3.8767700 -0.1671143 1.1171875 -4.1920471 0.1137695 -0.6870117 -3.5329971 -0.1339111 -1.0539551 3.3802185 -0.2496338 -1.0065918 3.5166512 -0.4287109 -0.3417969 -1.9859352 -0.6407471 0.2492676 -2.9460754 -1.4234619 -0.1635742 -4.1381493 -1.7076416 -0.1828613 -4.3246956 -0.1381836 -0.4409180 1.0367317 -0.1358643 0.1914063 3.4564056 0.3664551 0.7255859 -3.4526215 -0.0152588 0.8408203 -3.5601463 -0.5197754 0.0473633 4.1353111 -0.5421143 -0.3022461 3.5066528 -1.6550293 -0.5129395 -4.3638687 -0.8659668 -0.3959961 -3.4493828 -1.3096924 -0.1997070 -3.8879814 -0.1130371 0.0708008 -0.1196823 0.1610107 0.3637695 0.0946884 -0.3665771 0.2111816 4.3769684 } } phBound { Type BoundBVH AABBMin 1363.3198242 2619.3725586 36.5859032 AABBMax 1366.1801758 2622.1372070 73.8247223 Radius 18.7253 Centroid 1364.7500000 2620.7548828 55.2053146 CG 1364.7308350 2620.7426758 55.2045517 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.18214 } } ComputePolyNeighbors True Vertices 2 { 1364.6954346 2620.7646484 72.6388245 1364.8045654 2620.7451172 37.7717972 } } phBound { Type BoundBVH AABBMin 1363.2789307 2619.3889160 38.3910713 AABBMax 1367.6203613 2622.5571289 45.7957649 Radius 4.5748 Centroid 1365.4497070 2620.9731445 42.0934181 CG 1057.5253906 2029.7239990 35.4009438 Margin 0.005 GeometryCenter 1365.4497070 2620.9731445 42.0934181 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 51 57 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 4 51 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 51 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 61 51 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 61 50 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 17 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 38 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 38 18 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 39 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 38 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 38 52 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 3 50 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 18 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 3 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 45 39 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 0 2 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 0 4 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 0 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 0 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 45 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 30 45 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 39 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 6 57 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 23 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 33 6 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 25 23 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 57 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 57 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 5 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 5 6 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 33 47 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 5 7 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 7 5 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 47 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 38 40 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 40 60 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 60 40 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 40 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 40 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 39 34 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 39 30 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 58 34 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 22 60 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 32 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 32 33 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 41 34 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 33 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 34 36 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 36 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 7 26 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 27 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 29 30 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 29 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 26 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 26 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 28 26 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 29 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 28 15 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 55 29 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 55 53 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 31 29 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 58 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 58 31 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 58 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 36 37 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 54 46 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 46 47 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 26 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 46 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 46 54 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 37 35 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 35 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 31 49 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 42 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 43 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 43 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 53 55 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 9 8 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 56 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 55 56 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 56 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 56 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 49 21 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 21 44 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 12 11 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 42 11 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 49 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 44 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 48 19 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 48 49 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 53 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 49 53 8 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.2552490 -1.2456055 -1.4571304 -0.7889404 -1.5722656 -2.9076538 -0.3730469 -1.5756836 -1.6704674 -1.5217285 -0.8088379 -2.2564583 -1.1470947 -1.4223633 -2.8797417 0.2855225 -1.2382813 -1.7015419 0.1496582 -1.1804199 -3.3185043 -0.4929199 -1.4487305 -0.8723793 -0.4046631 0.6032715 3.3163567 -1.1678467 0.2749023 2.2602997 -0.8054199 0.5642090 3.7023468 0.0841064 -1.1623535 1.3549843 -0.6202393 -1.2912598 1.9192810 -0.8321533 -0.9912109 3.4356766 -1.1838379 -0.5808105 3.2083321 -1.4421387 -0.5673828 1.9669647 -2.0664063 0.6220703 -3.7023468 -2.1707764 0.0725098 -3.6421242 -1.6114502 0.0363770 -3.1677666 0.5184326 -0.0283203 3.1149979 0.5581055 -0.5087891 3.3262978 0.4666748 -0.4724121 2.1236916 1.7827148 0.4592285 -3.6206551 0.8580322 -0.2004395 -3.2136421 2.1706543 0.2373047 -3.5569229 0.5399170 -0.9792480 -3.6455116 -1.1131592 -1.3334961 -0.3059349 -1.3453369 -1.0039063 -0.2964439 -1.3627930 -0.7961426 0.4964447 -1.3781738 -0.1835938 -0.3425446 -1.2000732 -0.0039063 -1.3996162 -0.6689453 0.5632324 0.1619797 0.6490479 0.1896973 -3.1079941 0.5694580 -0.3576660 -2.1704712 -0.2021484 0.4472656 -1.1482010 0.3449707 0.4123535 -0.3339577 0.3643799 -0.0024414 -1.1391640 0.6295166 -0.3337402 -0.5745239 -1.0427246 0.6889648 -3.2811012 -1.0618896 0.4499512 -2.6701355 -0.5766602 0.5715332 -2.9218903 -0.1798096 0.4748535 -2.7305870 -0.0297852 -1.2690430 2.8519440 -1.0733643 -1.1701660 1.8895645 0.2169189 -0.9680176 2.3858376 -1.5103760 -0.5327148 -1.9395065 0.4860840 -0.8334961 -0.5344124 0.5482178 -0.7238770 -1.4227829 0.1722412 0.3571777 3.3354492 0.1138916 0.4267578 2.1147614 -1.7393799 -0.3845215 -3.2990685 -1.5454102 -1.3884277 -3.6144371 -0.8774414 1.1318359 -3.5856247 -0.5994873 0.5000000 1.0349808 0.4688721 -0.0705566 0.2235603 -1.3612061 -0.1457520 1.8830109 -1.2624512 -0.0419922 3.5256233 -0.5533447 -1.5842285 -3.5917244 -0.3479004 0.5734863 -0.5952034 -1.4738770 1.5839844 -3.6472054 0.6213379 0.5925293 -3.5489006 -1.8081055 -0.7304688 -3.6414452 } } phBound { Type BoundBVH AABBMin 1323.2081299 2598.4782715 36.4312973 AABBMax 1325.5029297 2600.3703613 48.3872681 Radius 6.16018 Centroid 1324.3554688 2599.4243164 42.4092827 CG 1324.3508301 2599.6181641 41.6555481 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 2 { Capsule 0 { MaterialIndex 1 CenterTop 2 CenterBottom 3 Radius 0.6312 } Capsule 1 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.450332 } } ComputePolyNeighbors True Vertices 4 { 1324.4987793 2599.6694336 41.0040779 1323.8806152 2599.1450195 47.8873558 1324.7647705 2599.6787109 40.5912323 1324.3299561 2599.7021484 37.1364746 } } phBound { Type BoundBVH AABBMin 1323.1914063 2598.8229980 36.8514633 AABBMax 1325.3750000 2600.2617188 41.7828140 Radius 2.79089 Centroid 1324.2832031 2599.5424805 39.3171387 CG 1125.8400879 2211.1328125 19.0580845 Margin 0.005 GeometryCenter 1324.2832031 2599.5424805 39.3171387 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 115 { Tri 0 { Vertices 57 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 64 56 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 24 57 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 56 64 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 39 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 56 39 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 9 39 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 39 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 39 9 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 65 8 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 65 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 23 24 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 23 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 12 24 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 12 56 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 14 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 13 1 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 50 14 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 13 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 2 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 66 2 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 55 2 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 2 55 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 55 66 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 54 55 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 44 38 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 36 37 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 38 49 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 51 36 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 36 51 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 9 51 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 10 7 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 8 7 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 35 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 38 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 38 43 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 48 49 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 48 43 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 48 6 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 6 48 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 46 42 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 0 61 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 1 20 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 20 1 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 19 50 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 60 20 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 60 47 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 34 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 45 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 43 35 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 34 20 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 45 34 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 46 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 45 46 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 18 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 54 67 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 0 55 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 0 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 0 68 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 49 5 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 49 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 6 42 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 46 18 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 16 18 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 47 60 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 68 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 60 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 7 27 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 54 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 7 10 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 10 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 5 25 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 40 42 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 40 3 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 58 54 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 27 7 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 15 18 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 58 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 25 26 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 67 58 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 18 15 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 41 40 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 26 28 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 26 25 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 52 28 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 22 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 5 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 3 41 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 3 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 30 58 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 67 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 67 29 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 16 68 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 29 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 17 16 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 17 41 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 52 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 32 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 31 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 31 32 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 31 28 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 53 63 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 52 53 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 62 29 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 62 31 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 62 69 29 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 70 { -0.2553711 0.5168457 -2.0523911 -0.3664551 0.5742188 -2.0864792 -0.6920166 0.3237305 -2.1092834 0.8288574 -0.0949707 0.1549797 0.5665283 -0.0595703 1.9055710 0.6434326 -0.2351074 -0.0114021 0.6147461 -0.1401367 -1.7860756 -0.0881348 -0.2187500 -1.0816383 -0.3482666 -0.1120605 -1.4983101 -0.2680664 -0.3920898 -1.9220543 0.0164795 -0.3828125 -1.6562653 -0.8890381 0.4711914 -2.3650627 -0.8525391 0.2973633 -2.3316536 -0.5665283 0.5830078 -2.3161507 -0.3729248 0.7192383 -2.3698807 0.6469727 0.4853516 0.5398979 0.5217285 0.5153809 0.0329208 0.5412598 0.4948730 2.0085182 0.8414307 0.2578125 -0.3644829 0.3452148 0.7160645 -2.3859825 0.2830811 0.5942383 -2.3608513 0.3399658 0.5671387 -2.4656754 0.3333740 -0.2070313 1.9200974 -1.0866699 0.0883789 -2.3680725 -0.9592285 -0.0339355 -2.3712349 0.4571533 -0.2502441 0.6422386 0.2740479 -0.2026367 0.6923561 0.0361328 -0.0734863 0.0087662 0.0338135 -0.0981445 1.6583710 0.0742188 0.5180664 1.7857704 0.0485840 0.3591309 1.1842804 -0.0483398 0.2973633 1.8360405 -0.0778809 0.1989746 1.7399445 1.0893555 0.2583008 -2.3971214 0.5823975 0.4868164 -2.3976479 1.0917969 0.0334473 -2.3816948 0.0721436 -0.5527344 -2.3094521 0.0886230 -0.7194824 -2.4094620 0.7636719 -0.2165527 -2.3410606 -0.8468018 -0.4702148 -2.3844032 0.8818359 0.0256348 0.1567116 0.7442627 0.2304688 1.7324944 0.6815186 -0.0026855 -1.7732048 0.9282227 -0.0075684 -2.3398552 0.7207031 -0.4689941 -2.3810921 0.8780518 0.1677246 -2.3482819 0.6938477 0.1413574 -2.0414047 0.5780029 0.3071289 -2.2063560 0.7459717 -0.0402832 -2.1677551 0.6541748 -0.1892090 -2.1881447 -0.0898438 0.7192383 -2.4035950 0.0876465 -0.3920898 -1.9540367 0.1538086 -0.2155762 1.9592285 0.0852051 -0.1755371 2.0366631 -0.2021484 -0.0737305 -1.0863037 -0.3613281 0.2485352 -1.6492653 -0.9044189 -0.0712891 -2.2803307 -1.0917969 -0.0900879 -2.3771057 0.0814209 0.0361328 0.6116104 0.1710205 0.5798340 1.9428215 0.2692871 0.5056152 -1.9825554 0.0242920 0.5783691 -2.0388451 -0.0528564 0.5341797 2.3413582 -0.0922852 0.2756348 2.0049820 -1.0638428 -0.3029785 -2.3848534 -0.5296631 -0.1872559 -1.8959427 -0.8242188 -0.0815430 -2.1408119 0.0657959 0.2929688 -0.0640030 0.2510986 0.4873047 0.0357056 0.0548096 0.6499023 2.4656754 } } phBound { Type BoundBVH AABBMin 1237.4283447 2637.7016602 36.5099792 AABBMax 1238.6275635 2638.7163086 41.8206482 Radius 2.76906 Centroid 1238.0279541 2638.2089844 39.1653137 CG 1237.9810791 2638.1364746 39.1675797 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.494309 } } ComputePolyNeighbors True Vertices 2 { 1238.1049805 2638.2072754 41.3089027 1237.9509277 2638.2106934 37.0217247 } } phBound { Type BoundBVH AABBMin 1232.4218750 2632.1303711 41.0148010 AABBMax 1243.9498291 2643.3461914 50.1859589 Radius 9.25741 Centroid 1238.1857910 2637.7382813 45.6003799 CG 1238.2285156 2638.3041992 44.1905022 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 3 { Capsule 0 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 1.50435 } Capsule 1 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 2.35882 } Capsule 2 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.41748 } } ComputePolyNeighbors True Vertices 6 { 1243.2854004 2642.6997070 43.5425682 1239.6276855 2639.8789063 42.2045937 1238.2736816 2638.2160645 47.7439346 1238.1196289 2638.2194824 43.4568253 1235.6968994 2636.6914063 43.3361778 1234.6971436 2634.6708984 44.8705177 } } phBound { Type BoundBVH AABBMin 1236.8841553 2636.8259277 36.5378075 AABBMax 1239.1318359 2639.3857422 41.1559448 Radius 2.86932 Centroid 1238.0080566 2638.1059570 38.8468781 CG 946.8878174 2018.9560547 30.0836697 Margin 0.005 GeometryCenter 1238.0080566 2638.1059570 38.8468781 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 121 { Tri 0 { Vertices 32 31 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 60 31 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 60 61 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 32 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 16 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 32 18 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 16 12 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 18 17 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 12 14 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 59 18 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 58 18 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 15 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 19 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 14 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 12 13 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 20 21 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 21 20 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 22 62 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 62 14 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 20 19 75 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 20 75 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 26 22 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 26 27 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 55 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 66 62 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 22 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 22 28 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 67 70 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 34 70 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 70 34 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 34 33 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 30 33 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 33 34 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 63 68 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 68 63 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 67 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 51 23 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 5 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 25 67 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 25 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 6 5 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 29 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 27 56 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 55 56 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 28 40 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 37 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 28 37 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 37 39 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 37 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 51 50 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 25 50 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 38 40 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 72 50 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 38 71 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 25 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 4 69 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 50 69 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 30 58 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 57 33 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 18 58 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 35 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 64 59 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 62 64 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 39 64 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 62 66 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 63 33 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 6 63 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 4 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 4 7 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 69 7 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 65 38 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 39 38 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 38 65 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 63 57 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 63 8 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 57 58 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 35 8 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 59 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 64 36 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 39 73 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 73 39 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 11 46 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 48 6 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 7 6 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 48 41 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 54 65 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 7 41 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 43 54 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 39 54 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 3 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 3 8 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 49 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 8 3 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 3 36 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 49 9 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 52 9 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 64 73 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 0 36 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 43 42 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 0 73 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 42 74 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 36 0 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 11 10 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 8 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 41 42 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 46 47 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 10 49 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 47 46 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 48 47 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 48 45 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 47 49 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 117 { Vertices 47 52 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 118 { Vertices 53 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 119 { Vertices 44 41 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 120 { Vertices 41 44 42 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 76 { 0.5279541 -0.2670898 1.5064545 0.3878174 -0.4079590 1.9740410 0.4357910 -0.5014648 1.8491631 -0.3122559 -0.4384766 1.8650208 -0.1004639 0.8225098 -1.3172417 -0.5286865 0.5317383 -1.7336655 -0.2430420 0.6672363 -0.7825661 0.2401123 0.7097168 -0.0973625 -0.3417969 -0.1877441 1.1364746 -0.3914795 -0.2358398 1.5165329 -0.4958496 0.2067871 1.1565590 -0.4185791 0.5520020 -0.0126534 -0.1968994 -0.5947266 -1.5030785 -0.1291504 -0.5534668 -2.2993469 0.1080322 -0.5224609 -1.5332413 0.0969238 -0.5781250 -2.3004036 -0.3515625 -1.2148438 -2.2775002 -0.6365967 -1.0769043 -2.2795448 -0.4791260 -0.4843750 -1.5689697 0.3159180 -1.0708008 -2.2803192 0.4097900 -0.6782227 -1.7495193 0.2828369 -0.5244141 -1.4441605 0.5706787 -0.4006348 -1.6767921 0.2661133 1.2060547 -2.2710876 -0.1187744 1.2797852 -2.2793350 -0.0863037 1.0478516 -1.9293671 0.7697754 -0.5402832 -2.2636871 0.8103027 -0.2302246 -1.9629822 0.4114990 -0.0051270 -2.3027306 0.4908447 -0.1457520 -2.3090706 -0.5521240 -0.2700195 -1.4980736 -0.7612305 -0.3015137 -1.8107605 -0.5756836 -0.3735352 -2.2911034 -0.5579834 -0.0773926 -1.2149162 -0.6568604 -0.0205078 -1.7732697 -0.2309570 -0.3845215 0.2981300 0.0708008 -0.4096680 1.5419006 0.3542480 0.3315430 -1.6875038 0.4685059 0.4455566 -1.4746056 0.4127197 0.0053711 -0.7776337 0.5012207 0.3659668 -2.2975159 0.3117676 0.6936035 1.1473274 0.5073242 0.3913574 1.5714302 0.5576172 0.2182617 0.3612747 0.4143066 0.6289063 1.9272461 0.1342773 0.8530273 2.2404251 -0.3553467 0.6320801 1.1482430 -0.4282227 0.6188965 1.5755882 -0.1250000 0.7402344 0.7258301 -0.6265869 0.3500977 1.4576874 0.2938232 0.7744141 -1.7726364 0.2718506 0.9692383 -2.2827148 -0.5494385 0.5275879 2.3090668 -0.3090820 0.6748047 2.2974396 0.5162354 0.3862305 -0.0238571 1.1237793 -0.0668945 -2.2569237 1.0612793 0.0720215 -2.2553711 -0.4768066 -0.0773926 -0.4003944 -0.3890381 -0.2539063 -0.7723465 -0.0364990 -0.4978027 -0.8482475 -1.1239014 -0.4279785 -2.2751045 -0.9598389 -0.5605469 -2.2824326 0.4191895 -0.3356934 -1.1264000 -0.5778809 0.2133789 -0.7832718 0.1602783 -0.4416504 -0.0557823 0.4683838 0.7312012 -0.3244934 0.3759766 -0.1098633 -1.1404953 -0.7900391 0.5395508 -2.2868729 -0.7170410 0.3061523 -1.8271103 0.2160645 0.7419434 -0.6397171 -0.8813477 -0.0473633 -2.2875786 0.9527588 0.6247559 -2.2833519 0.5447998 0.7431641 -2.2948380 0.4432373 -0.1557617 0.3331566 0.6467285 0.1508789 1.9860191 0.8173828 -1.2800293 -2.2613602 } } phBound { Type BoundBVH AABBMin 1244.1883545 2588.5212402 38.3090973 AABBMax 1246.7615967 2591.0085449 74.1421814 Radius 18.0057 Centroid 1245.4749756 2589.7648926 56.2256393 CG 1245.4875488 2589.8386230 56.2283783 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.0638 } } ComputePolyNeighbors True Vertices 2 { 1245.4257813 2589.7736816 73.0752258 1245.5241699 2589.7561035 39.3760490 } } phBound { Type BoundBVH AABBMin 1244.1507568 2588.5358887 39.9746552 AABBMax 1248.0576172 2591.3869629 47.1312981 Radius 4.31885 Centroid 1246.1042480 2589.9614258 43.5529785 CG 959.2301025 1993.6500244 36.1284866 Margin 0.005 GeometryCenter 1246.1042480 2589.9614258 43.5529785 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 51 57 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 4 51 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 51 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 61 51 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 61 50 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 17 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 38 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 38 18 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 39 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 38 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 38 52 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 3 50 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 18 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 3 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 45 39 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 0 4 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 0 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 39 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 0 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 45 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 0 2 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 30 45 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 38 40 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 40 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 40 60 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 6 57 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 40 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 60 40 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 33 6 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 25 23 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 22 60 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 32 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 23 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 57 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 57 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 5 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 5 6 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 33 47 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 5 7 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 7 5 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 47 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 39 30 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 58 34 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 39 34 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 34 36 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 41 34 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 33 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 36 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 32 33 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 29 30 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 27 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 29 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 26 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 58 31 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 58 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 37 35 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 36 37 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 46 47 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 26 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 26 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 28 26 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 29 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 28 15 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 55 29 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 55 53 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 31 29 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 26 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 46 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 46 54 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 54 46 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 35 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 31 49 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 42 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 43 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 43 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 53 55 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 9 8 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 56 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 55 56 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 56 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 56 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 49 21 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 21 44 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 12 11 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 42 11 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 49 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 44 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 48 19 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 48 49 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 53 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 49 53 8 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.1295166 -1.1208496 -1.4083214 -0.7099609 -1.4145508 -2.8102493 -0.3356934 -1.4179688 -1.6145096 -1.3693848 -0.7277832 -2.1808739 -1.0322266 -1.2797852 -2.7832756 0.2570801 -1.1140137 -1.6445427 0.1347656 -1.0620117 -3.2073364 -0.4436035 -1.3034668 -0.8431587 -0.3641357 0.5429688 3.2052574 -1.0509033 0.2475586 2.1845818 -0.7247314 0.5078125 3.5783195 0.0756836 -1.0458984 1.3095894 -0.5581055 -1.1618652 1.8549843 -0.7489014 -0.8918457 3.3205833 -1.0653076 -0.5227051 3.1008530 -1.2977295 -0.5104980 1.9010735 -1.8594971 0.5598145 -3.5783234 -1.9534912 0.0654297 -3.5201149 -1.4501953 0.0329590 -3.0616531 0.4665527 -0.0251465 3.0106468 0.5023193 -0.4577637 3.2149773 0.4200439 -0.4250488 2.0525475 1.6042480 0.4133301 -3.4993668 0.7722168 -0.1804199 -3.1059914 1.9533691 0.2136230 -3.4377708 0.4858398 -0.8811035 -3.5233917 -1.0017090 -1.1997070 -0.2956886 -1.2106934 -0.9033203 -0.2865143 -1.2263184 -0.7163086 0.4798126 -1.2402344 -0.1650391 -0.3310738 -1.0799561 -0.0031738 -1.3527336 -0.6019287 0.5070801 0.1565514 0.5841064 0.1708984 -3.0038795 0.5124512 -0.3217773 -2.0977631 -0.1818848 0.4025879 -1.1097412 0.3104248 0.3710938 -0.3227730 0.3278809 -0.0019531 -1.1010056 0.5665283 -0.3000488 -0.5552826 -0.9383545 0.6201172 -3.1711884 -0.9555664 0.4050293 -2.5806923 -0.5189209 0.5144043 -2.8241196 -0.1617432 0.4274902 -2.6391182 -0.0268555 -1.1418457 2.7564049 -0.9658203 -1.0529785 1.8262634 0.1951904 -0.8708496 2.3059120 -1.3591309 -0.4792480 -1.8745384 0.4375000 -0.7500000 -0.5165100 0.4934082 -0.6511230 -1.3751221 0.1550293 0.3215332 3.2237167 0.1025391 0.3840332 2.0439186 -1.5651855 -0.3459473 -3.1885529 -1.3907471 -1.2492676 -3.4933586 -0.7895508 1.0187988 -3.4655113 -0.5394287 0.4501953 1.0003052 0.4219971 -0.0632324 0.2160683 -1.2248535 -0.1308594 1.8199272 -1.1359863 -0.0375977 3.4075165 -0.4979248 -1.4255371 -3.4714088 -0.3131104 0.5161133 -0.5752678 -1.3262939 1.4255371 -3.5250320 0.5590820 0.5334473 -3.4300156 -1.6269531 -0.6572266 -3.5194588 } } phBound { Type BoundBVH AABBMin 1380.0344238 2843.5664063 48.8399315 AABBMax 1400.4235840 2863.9555664 69.2291336 Radius 17.6575 Centroid 1390.2290039 2853.7609863 59.0345306 CG 1390.2258301 2853.7668457 59.0347710 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 52 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Sphere 0 { MaterialIndex 0 Center 0 Radius 10.1946 } } ComputePolyNeighbors True Vertices 1 { 1390.2290039 2853.7609863 59.0345306 } } phBound { Type BoundBVH AABBMin 1381.2055664 2848.2141113 42.3265800 AABBMax 1397.7100830 2861.3137207 63.4800110 Radius 14.9287 Centroid 1389.4577637 2854.7639160 52.9032974 CG 1388.8804932 2854.2407227 52.2039337 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 25 { Capsule 0 { MaterialIndex 1 CenterTop 48 CenterBottom 49 Radius 0.266268 } Capsule 1 { MaterialIndex 1 CenterTop 46 CenterBottom 47 Radius 0.867661 } Capsule 2 { MaterialIndex 0 CenterTop 44 CenterBottom 45 Radius 0.302893 } Capsule 3 { MaterialIndex 1 CenterTop 42 CenterBottom 43 Radius 0.267837 } Capsule 4 { MaterialIndex 1 CenterTop 40 CenterBottom 41 Radius 0.561172 } Capsule 5 { MaterialIndex 1 CenterTop 38 CenterBottom 39 Radius 0.387218 } Capsule 6 { MaterialIndex 1 CenterTop 36 CenterBottom 37 Radius 0.63923 } Capsule 7 { MaterialIndex 0 CenterTop 34 CenterBottom 35 Radius 0.350877 } Capsule 8 { MaterialIndex 1 CenterTop 32 CenterBottom 33 Radius 0.84775 } Capsule 9 { MaterialIndex 0 CenterTop 30 CenterBottom 31 Radius 1.07965 } Capsule 10 { MaterialIndex 1 CenterTop 28 CenterBottom 29 Radius 0.421018 } Capsule 11 { MaterialIndex 0 CenterTop 26 CenterBottom 27 Radius 0.344687 } Capsule 12 { MaterialIndex 0 CenterTop 24 CenterBottom 25 Radius 0.407623 } Capsule 13 { MaterialIndex 0 CenterTop 22 CenterBottom 23 Radius 0.231066 } Capsule 14 { MaterialIndex 1 CenterTop 20 CenterBottom 21 Radius 1.94477 } Capsule 15 { MaterialIndex 0 CenterTop 18 CenterBottom 19 Radius 0.471195 } Capsule 16 { MaterialIndex 0 CenterTop 16 CenterBottom 17 Radius 0.362234 } Capsule 17 { MaterialIndex 0 CenterTop 14 CenterBottom 15 Radius 0.370084 } Capsule 18 { MaterialIndex 0 CenterTop 12 CenterBottom 13 Radius 0.689597 } Capsule 19 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.493163 } Capsule 20 { MaterialIndex 0 CenterTop 8 CenterBottom 9 Radius 0.33456 } Capsule 21 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.304968 } Capsule 22 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.214351 } Capsule 23 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.311252 } Capsule 24 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.59299 } } ComputePolyNeighbors True Vertices 50 { 1396.6921387 2849.1582031 62.6504593 1390.0292969 2853.3593750 52.0322647 1391.1013184 2854.2990723 53.9858780 1390.6882324 2854.4528809 56.7558670 1390.3989258 2849.9809570 54.5515633 1391.0507813 2852.7250977 53.1185112 1391.0225830 2854.1530762 51.9442635 1391.0528564 2854.2302246 53.5036430 1394.5065918 2850.9516602 54.2346230 1390.9929199 2852.3901367 50.2049828 1387.5998535 2856.5708008 52.6836891 1384.0588379 2860.5136719 54.6178093 1387.4882813 2857.3122559 55.2760506 1383.0971680 2858.6164551 59.5531349 1387.1202393 2856.1560059 52.7742882 1381.9124756 2857.6945801 53.4279823 1387.4249268 2855.9262695 53.2175522 1381.7825928 2857.3012695 57.4011154 1389.3394775 2854.2050781 51.7279892 1387.7738037 2857.1699219 59.6236038 1389.6633301 2853.3186035 50.6079826 1387.5847168 2854.9860840 54.9139671 1387.0565186 2853.3415527 53.5221558 1387.0350342 2854.1809082 56.3830719 1388.9555664 2853.6076660 50.7560616 1387.0366211 2853.3356934 53.0723991 1393.9649658 2855.4721680 51.2321243 1391.3304443 2855.2939453 49.2840347 1391.9512939 2856.3259277 51.8273621 1389.9420166 2854.4479980 47.0959702 1390.4051514 2853.5314941 52.5560684 1389.8648682 2853.7087402 49.1314163 1389.5412598 2854.0417480 43.2131119 1389.5288086 2853.8215332 47.9162521 1388.7070313 2852.2863770 50.0799637 1389.2209473 2853.0925293 49.1317368 1389.0859375 2854.4238281 48.4478455 1387.4831543 2855.9379883 52.9317856 1387.8292236 2855.4375000 49.9516869 1386.8621826 2858.2246094 50.3943062 1388.3565674 2854.1494141 48.7199745 1385.8831787 2853.6201172 48.7368584 1387.6489258 2851.1582031 50.3309822 1388.8144531 2852.4799805 49.8753777 1387.7504883 2851.1101074 52.7200623 1388.7529297 2852.3850098 50.2384338 1390.9982910 2850.0346680 52.1874924 1389.9831543 2852.8188477 48.0779724 1386.1245117 2849.0673828 53.0123215 1387.4155273 2850.9482422 50.3274155 } } phBound { Type BoundBVH AABBMin 1388.6680908 2852.3085938 43.2623215 AABBMax 1391.5877686 2855.3803711 48.1870842 Radius 3.2486 Centroid 1390.1279297 2853.8444824 45.7247009 CG 1037.5653076 2130.6074219 37.8879662 Margin 0.005 GeometryCenter 1390.1279297 2853.8444824 45.7247009 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 113 { Tri 0 { Vertices 43 65 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 65 12 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 11 44 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 2 1 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 65 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 14 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 14 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 13 14 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 0 59 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 14 59 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 29 42 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 43 62 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 43 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 62 43 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 53 62 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 44 11 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 46 45 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 45 46 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 53 46 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 18 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 18 21 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 21 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 53 19 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 19 53 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 20 53 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 53 26 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 21 26 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 29 14 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 58 55 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 54 55 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 58 56 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 29 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 54 56 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 56 28 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 29 9 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 28 9 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 28 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 7 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 49 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 49 8 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 50 69 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 50 61 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 49 50 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 24 50 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 50 24 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 50 47 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 50 8 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 22 16 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 23 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 15 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 23 21 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 34 24 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 14 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 33 42 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 33 29 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 11 13 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 26 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 34 26 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 24 34 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 52 48 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 51 48 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 47 24 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 47 48 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 3 11 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 46 11 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 64 13 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 42 41 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 41 42 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 51 33 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 30 33 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 30 51 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 5 46 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 5 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 35 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 35 25 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 52 34 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 25 63 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 52 63 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 72 41 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 37 66 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 71 41 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 6 64 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 6 41 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 39 41 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 4 6 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 64 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 33 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 41 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 30 60 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 41 32 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 36 37 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 32 70 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 70 32 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 4 3 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 39 27 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 5 4 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 5 27 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 57 25 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 25 57 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 63 68 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 68 60 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 71 40 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 38 39 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 39 38 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 27 38 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 67 57 38 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 73 { -0.7105713 -0.5019531 -2.1925926 -0.9638672 -0.5930176 -2.0027771 -1.2611084 -0.9267578 -2.2749901 -1.1582031 0.4309082 0.4763947 -1.2282715 0.3242188 0.9033203 -1.0017090 0.6643066 0.0581055 -1.2878418 -0.0415039 0.7779427 1.4598389 -0.3474121 -2.4596481 0.8458252 0.0954590 -2.4623795 0.7066650 -0.3229980 -2.1559792 1.3731689 -0.6899414 -2.4366035 -1.1259766 -0.0239258 -1.2614899 -0.9873047 -0.1926270 -1.7866592 -0.8719482 -0.2756348 -0.9625931 -0.5662842 -0.6291504 -1.8284302 -0.1534424 1.3156738 -2.3553429 -0.0408936 0.9489746 -2.3843002 0.3217773 1.4667969 -2.4239464 -0.6287842 1.4123535 -2.3411674 -1.1888428 1.5358887 -2.3487473 -0.7239990 1.0615234 -2.0080833 -0.2392578 1.0439453 -1.8247910 0.1094971 0.4091797 -2.3267632 -0.2430420 0.7275391 -1.9369812 -0.0777588 0.2983398 -1.5659943 -0.5302734 0.8454590 0.4616127 -0.6258545 0.9587402 -1.1565018 -0.7625732 0.8588867 1.5990524 0.7073975 -0.7316895 -2.3977165 0.2318115 -0.2282715 -1.7674828 0.2603760 -0.0268555 0.7983322 0.3332520 -0.0952148 1.9654884 0.3176270 -0.3466797 1.1243668 -0.1396484 -0.4384766 0.8321419 -0.1485596 0.8500977 -1.1903877 -0.3646240 1.0791016 -0.9066505 0.2072754 -0.8081055 2.1067123 0.1188965 -0.9355469 1.7991753 -1.0025635 0.8195801 2.2094269 -1.2836914 0.1352539 1.6605263 -1.1986084 0.7731934 2.4623833 -0.4901123 -0.7128906 1.1633301 -0.4431152 -0.4455566 -0.9852600 -1.4598389 0.3281250 -2.2342072 -1.2742920 0.0712891 -2.0102844 -1.2093506 0.4187012 -1.9300804 -1.0364990 0.6469727 -1.2529221 0.2176514 -0.0263672 -1.5389328 0.0256348 -0.0290527 -0.7221451 0.6052246 0.0832520 -2.4081764 0.4602051 0.0400391 -1.9604034 0.0833740 0.0937500 -0.3399391 -0.0153809 0.5522461 -0.3131065 -0.9655762 0.9274902 -1.6571121 -0.1619873 -0.3725586 -2.0013390 -0.2579346 -0.6000977 -1.8097038 -0.0266113 -0.3320313 -2.2004738 -0.1839600 0.8210449 1.1504440 0.0058594 -1.3254395 -2.3416214 -0.3325195 -1.3354492 -2.3049316 0.0599365 0.3256836 1.7793121 0.3360596 0.2822266 -2.3147888 -1.1652832 1.0646973 -2.1243668 -0.1447754 0.6191406 0.8869476 -1.0651855 -0.0920410 0.4746513 -1.2005615 -0.3767090 -2.2205620 -0.2227783 -1.5358887 2.3562584 -0.1658936 0.8181152 1.9517670 0.1571045 0.4560547 1.3037186 0.8338623 0.9509277 -2.4114380 0.2023926 -0.4096680 2.1910782 -1.0449219 -0.2414551 2.1702347 -0.5087891 -1.1096191 2.2630196 } } phBound { Type BoundBVH AABBMin 1400.2229004 2722.7749023 37.0351372 AABBMax 1401.9526367 2724.3093262 42.3428841 Radius 2.89476 Centroid 1401.0877686 2723.5419922 39.6890106 CG 1046.6743164 2035.6579590 26.6540127 Margin 0.005 GeometryCenter 1401.0877686 2723.5419922 39.6890106 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 97 { Tri 0 { Vertices 17 16 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 16 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 18 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 17 14 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 18 21 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 14 17 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 19 21 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 53 36 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 36 53 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 26 36 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 23 26 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 38 26 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 23 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 14 36 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 26 6 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 15 14 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 14 15 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 40 6 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 16 15 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 16 22 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 21 18 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 22 24 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 25 24 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 1 49 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 1 39 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 1 45 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 6 7 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 8 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 30 7 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 8 0 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 9 8 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 30 9 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 0 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 30 31 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 2 49 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 39 15 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 44 39 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 39 22 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 15 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 40 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 40 42 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 43 40 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 25 34 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 43 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 22 33 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 34 24 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 22 39 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 44 33 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 44 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 31 30 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 33 44 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 44 30 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 30 42 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 46 42 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 40 41 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 52 42 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 35 43 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 40 43 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 54 33 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 52 54 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 33 11 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 34 11 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 54 52 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 41 58 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 10 41 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 51 41 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 47 48 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 10 43 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 11 33 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 11 10 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 55 54 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 57 56 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 57 54 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 3 57 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 55 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 54 55 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 48 13 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 10 11 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 12 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 3 58 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 12 13 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 3 12 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 10 12 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 51 10 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 41 51 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 3 41 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 50 51 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 50 4 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 29 12 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 12 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 57 3 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 5 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 27 28 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 29 28 50 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 59 { -0.7653809 -0.7670898 0.1757965 -0.8648682 -0.6276855 0.2689934 -0.6651611 -0.5063477 -0.2052689 0.3395996 -0.1066895 2.1540375 0.6130371 -0.2692871 2.2870140 0.6810303 -0.1994629 2.5762634 -0.1491699 -0.0766602 -0.7689972 -0.1815186 -0.3310547 -0.3440895 -0.4073486 -0.5012207 -0.2999268 -0.3441162 -0.6145020 0.2236137 0.1959229 0.1997070 1.5388412 0.0031738 0.3498535 1.4630165 0.1813965 0.1557617 1.8500099 0.2352295 0.0568848 2.4636650 -0.3571777 -0.0498047 -2.2966766 -0.4233398 0.0981445 -0.6784782 -0.5488281 0.1333008 -2.2673683 -0.7279053 -0.0478516 -2.6538734 -0.4726563 0.4570313 -2.0500450 -0.6130371 0.5798340 -2.4074059 -0.8061523 0.3134766 -2.6072769 -0.3957520 0.6257324 -2.1639442 -0.3903809 0.4020996 -0.7128983 0.2830811 0.5441895 -2.4691887 -0.1204834 0.7673340 -2.3232231 0.1345215 0.5275879 -1.6419449 0.2937012 0.2416992 -2.1566353 0.5603027 -0.0117188 2.3051987 0.7850342 -0.0034180 2.6538734 0.5283203 0.0354004 1.9090309 -0.2290039 -0.1184082 -0.1494179 -0.3114014 -0.3398438 0.0312958 0.3242188 -0.1916504 2.3668976 -0.3259277 0.2788086 0.8993721 0.0126953 0.4443359 0.4991455 0.1704102 0.2800293 1.0649033 -0.1018066 -0.0537109 -2.3133163 0.3939209 0.1267090 -2.6090622 0.3892822 0.2583008 -2.4662628 -0.4885254 -0.0144043 -0.2902679 0.2305908 0.0388184 -0.5527267 0.2524414 -0.1638184 1.4773865 -0.0614014 -0.1623535 -0.2582016 0.3001709 0.1132813 0.8096657 -0.3265381 0.0014648 -0.1610260 -0.5760498 -0.4155273 0.2983017 -0.3093262 -0.1350098 0.7342491 -0.3842773 -0.0458984 2.2526741 -0.2558594 0.1347656 2.2152481 -0.6010742 -0.1840820 -0.3539925 0.8648682 -0.0844727 2.2686653 0.3901367 -0.0627441 1.6304131 0.0007324 -0.3164063 1.0114021 -0.0698242 -0.1464844 -2.5942078 -0.2183838 -0.2749023 1.0450935 -0.3762207 -0.3464355 2.3652725 -0.2326660 -0.4770508 2.2925339 0.1815186 -0.4628906 2.3254929 0.0885010 -0.3796387 1.9357376 } } phBound { Type BoundBVH AABBMin 1398.9365234 2720.5788574 36.9655380 AABBMax 1402.5357666 2724.4011230 48.0772438 Radius 6.1448 Centroid 1400.7360840 2722.4899902 42.5213928 CG 1400.4702148 2722.7338867 41.8289490 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 6 { Capsule 0 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.268897 } Capsule 1 { MaterialIndex 0 CenterTop 8 CenterBottom 9 Radius 0.409577 } Capsule 2 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.208691 } Capsule 3 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.175904 } Capsule 4 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.309909 } Capsule 5 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.3312 } } ComputePolyNeighbors True Vertices 12 { 1401.2165527 2723.1958008 43.3773575 1400.8078613 2722.4633789 47.6888962 1400.3968506 2722.8549805 40.3357735 1399.7906494 2721.0698242 44.2818260 1402.2600098 2723.3073730 42.9231720 1401.4636230 2723.5070801 41.4941330 1400.2513428 2723.1713867 40.1554909 1399.2789307 2723.5766602 42.0438042 1401.1256104 2723.1003418 42.9294472 1400.9219971 2723.8469238 37.4281731 1400.8188477 2723.5112305 39.1684265 1400.3022461 2722.8315430 40.1609192 } } phBound { Type BoundBVH AABBMin 1405.6490479 2732.4060059 35.2973938 AABBMax 1410.3461914 2737.5798340 42.9044876 Radius 5.16477 Centroid 1407.9975586 2734.9929199 39.1009407 CG 1407.4899902 2735.4160156 39.4269714 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 7 { Capsule 0 { MaterialIndex 1 CenterTop 12 CenterBottom 13 Radius 0.4457 } Capsule 1 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.372589 } Capsule 2 { MaterialIndex 0 CenterTop 8 CenterBottom 9 Radius 0.348034 } Capsule 3 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.434825 } Capsule 4 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.33805 } Capsule 5 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.360791 } Capsule 6 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.405629 } } ComputePolyNeighbors True Vertices 14 { 1406.7833252 2733.9108887 39.8287277 1406.2684326 2733.0651855 42.3795700 1408.0944824 2737.0761719 42.2412338 1407.4548340 2736.8154297 39.9464264 1409.7852783 2735.4101563 41.2488174 1408.8138428 2735.7543945 39.9710617 1408.3698730 2735.8977051 39.6606293 1406.9704590 2735.4831543 38.1432648 1406.8848877 2735.2685547 38.1402969 1406.8529053 2734.3569336 39.4103012 1407.2434082 2736.6918945 39.4697189 1406.9282227 2735.5332031 38.0141678 1406.8349609 2735.4233398 37.7845955 1406.9289551 2735.4394531 35.7636070 } } phBound { Type BoundBVH AABBMin 1406.2740479 2734.8369141 35.4995651 AABBMax 1407.6859131 2736.1132813 38.3103752 Radius 1.69729 Centroid 1406.9799805 2735.4750977 36.9049683 CG 1049.7327881 2041.1636963 29.2605801 Margin 0.005 GeometryCenter 1406.9799805 2735.4750977 36.9049683 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 93 { Tri 0 { Vertices 38 39 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 38 29 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 6 39 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 29 30 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 30 29 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 11 39 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 5 12 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 39 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 6 30 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 12 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 4 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 11 9 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 31 32 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 32 31 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 32 14 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 37 14 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 8 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 13 0 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 7 8 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 0 13 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 47 7 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 44 57 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 52 57 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 55 45 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 44 50 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 46 57 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 22 45 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 22 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 53 30 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 57 46 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 58 53 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 46 22 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 47 48 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 47 0 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 49 23 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 50 51 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 55 50 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 2 23 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 2 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 2 48 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 22 55 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 25 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 25 23 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 10 20 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 31 9 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 9 4 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 37 31 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 33 3 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 30 53 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 58 22 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 20 15 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 14 37 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 2 1 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 27 26 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 26 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 54 53 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 4 26 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 58 24 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 36 54 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 35 36 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 24 25 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 15 17 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 42 25 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 17 42 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 1 13 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 3 33 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 33 53 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 53 54 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 34 27 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 20 10 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 26 27 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 10 26 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 40 41 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 56 21 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 41 56 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 40 27 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 27 34 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 25 42 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 18 17 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 15 20 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 28 18 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 21 28 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 17 16 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 17 35 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 35 17 19 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 59 { 0.0722656 0.5114746 -1.2012329 0.0363770 0.3803711 -0.9167671 0.1673584 0.3732910 -0.9110641 -0.2325439 -0.4460449 -0.4953461 -0.4978027 -0.2233887 -0.5761566 -0.2592773 -0.3432617 -0.8320961 -0.1702881 -0.4799805 -1.1666603 -0.1081543 0.6276855 -1.4054031 -0.3201904 0.4873047 -1.3784218 -0.5101318 -0.1403809 -1.0532074 -0.5520020 -0.1530762 0.6861382 -0.6518555 -0.2844238 -1.3635406 -0.4432373 -0.2424316 -1.0539818 -0.1972656 0.3288574 -1.0797157 -0.3970947 0.2802734 -1.2729073 -0.3009033 0.2714844 0.2354202 -0.0832520 0.4238281 1.1042137 0.0288086 0.2424316 0.8230515 -0.1616211 0.2443848 0.8188057 0.1757813 0.2375488 1.1609612 -0.5592041 0.0134277 0.2738953 -0.5231934 -0.0576172 0.9654121 0.3897705 -0.1008301 -0.9097748 0.4195557 0.2280273 -1.1867752 0.2987061 0.0253906 -0.3088036 0.1751709 0.2443848 -0.2569046 -0.4265137 -0.3203125 0.2951698 -0.2576904 -0.5397949 1.0228882 -0.3747559 0.1276855 0.9320831 -0.1820068 -0.5988770 -1.3814697 -0.0402832 -0.5334473 -1.1462021 -0.5214844 -0.0048828 -1.0496902 -0.7059326 -0.0410156 -1.3532028 -0.1278076 -0.4731445 -0.0662041 0.1551514 -0.4887695 1.0504684 0.2460938 -0.0329590 0.8079529 0.2601318 -0.1477051 0.7799454 -0.4631348 0.1403809 -1.0559540 -0.4589844 -0.4553223 -1.3843422 -0.2454834 -0.3854980 -1.1938972 -0.4631348 -0.3808594 1.0186005 -0.5777588 -0.3618164 1.4054070 0.0509033 0.2297363 0.5569878 -0.2615967 -0.6042480 1.1966057 0.4952393 -0.5888672 -1.3440247 0.4046631 -0.2744141 -1.0357094 0.3309326 -0.3957520 -1.0417137 0.2921143 0.6381836 -1.3993111 0.2490234 0.5456543 -1.2934952 0.5911865 0.2351074 -1.3998260 0.6511230 -0.2263184 -1.3767509 0.7059326 -0.0043945 -1.3832703 0.1599121 -0.6381836 -1.3649101 0.1191406 -0.4318848 -0.4147911 0.1911621 -0.3750000 0.7542953 0.5014648 -0.1481934 -1.1487312 -0.6072998 -0.1364746 1.2247429 0.2629395 -0.5175781 -1.1620293 0.2586670 -0.2229004 -0.3680840 } } phBound { Type BoundBVH AABBMin 1357.4604492 2737.8283691 50.8306618 AABBMax 1358.6835938 2738.8815918 56.2262993 Radius 2.81595 Centroid 1358.0720215 2738.3549805 53.5284805 CG 1358.1027832 2738.3701172 53.5250435 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.485128 } } ComputePolyNeighbors True Vertices 2 { 1358.1473389 2738.3493652 55.7247849 1357.9967041 2738.3605957 51.3321762 } } phBound { Type BoundBVH AABBMin 1352.3300781 2732.5405273 55.5321884 AABBMax 1364.1083984 2743.1137695 64.7113495 Radius 9.14849 Centroid 1358.2192383 2737.8271484 60.1217690 CG 1358.3181152 2738.5634766 58.6780319 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 3 { Capsule 0 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 1.47641 } Capsule 1 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 2.31501 } Capsule 2 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.409726 } } ComputePolyNeighbors True Vertices 6 { 1363.4553223 2742.4863281 58.0133591 1359.7253418 2739.9096680 56.6424484 1358.3129883 2738.3493652 62.3180199 1358.1621094 2738.3605957 57.9255180 1355.7089844 2736.9875488 57.8018799 1354.6254883 2735.0583496 59.3739471 } } phBound { Type BoundBVH AABBMin 1356.9243164 2736.9587402 50.8363571 AABBMax 1359.1457520 2739.5153809 55.5680580 Radius 2.90948 Centroid 1358.0350342 2738.2370605 53.2022095 CG 1033.5966797 2084.9335938 40.7823601 Margin 0.005 GeometryCenter 1358.0350342 2738.2370605 53.2022095 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 121 { Tri 0 { Vertices 32 31 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 60 31 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 60 61 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 32 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 16 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 32 18 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 16 12 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 18 17 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 12 14 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 59 18 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 58 18 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 15 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 19 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 20 19 75 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 26 22 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 20 75 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 22 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 26 27 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 55 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 14 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 12 13 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 22 28 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 20 21 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 21 20 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 22 62 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 66 62 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 62 14 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 67 70 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 34 70 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 70 34 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 34 33 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 30 33 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 33 34 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 63 68 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 68 63 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 67 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 5 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 25 67 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 25 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 25 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 6 5 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 4 69 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 29 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 27 56 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 55 56 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 28 40 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 37 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 28 37 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 37 39 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 37 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 51 23 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 51 50 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 25 50 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 38 40 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 38 71 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 72 50 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 50 69 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 18 58 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 30 58 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 57 33 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 35 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 64 59 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 62 64 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 39 64 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 62 66 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 63 33 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 6 63 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 4 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 4 7 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 65 38 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 69 7 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 39 38 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 38 65 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 63 57 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 57 58 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 35 8 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 59 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 64 36 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 39 73 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 39 54 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 73 39 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 63 8 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 11 46 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 48 6 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 7 6 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 48 41 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 54 65 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 7 41 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 43 54 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 8 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 11 10 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 3 8 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 46 47 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 10 49 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 49 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 47 46 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 3 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 64 73 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 0 36 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 0 73 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 43 42 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 42 74 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 41 42 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 48 47 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 49 9 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 47 49 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 52 9 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 8 3 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 3 36 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 36 0 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 47 52 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 117 { Vertices 53 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 118 { Vertices 48 45 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 119 { Vertices 44 41 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 120 { Vertices 41 44 42 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 76 { 0.5164795 -0.2707520 1.5434990 0.3719482 -0.4018555 2.0225830 0.4141846 -0.4958496 1.8946342 -0.3157959 -0.3957520 1.9108810 -0.0433350 0.8295898 -1.3496323 -0.4780273 0.5664063 -1.7762947 -0.1911621 0.6843262 -0.8018074 0.2845459 0.7014160 -0.0997543 -0.3317871 -0.1484375 1.1644211 -0.3829346 -0.1931152 1.5538254 -0.4625244 0.2463379 1.1849976 -0.3690186 0.5805664 -0.0129623 -0.2106934 -0.5546875 -1.5400391 -0.1422119 -0.5178223 -2.3558159 0.0917969 -0.4995117 -1.5709419 0.0781250 -0.5537109 -2.3569717 -0.3941650 -1.1545410 -2.3335037 -0.6663818 -1.0048828 -2.3355255 -0.4815674 -0.4321289 -1.6075516 0.2674561 -1.0478516 -2.3363914 0.3795166 -0.6677246 -1.7925415 0.2630615 -0.5104980 -1.4796753 0.5515137 -0.4040527 -1.7179527 0.3355713 1.1865234 -2.3269348 -0.0378418 1.2783203 -2.3353119 -0.0179443 1.0493164 -1.9768105 0.7395020 -0.5510254 -2.3193512 0.7951660 -0.2490234 -2.0112495 0.4157715 -0.0080566 -2.3593559 0.4863281 -0.1499023 -2.3658524 -0.5421143 -0.2182617 -1.5349121 -0.7486572 -0.2382813 -1.8552856 -0.5706787 -0.3183594 -2.3474388 -0.5380859 -0.0292969 -1.2447166 -0.6320801 0.0317383 -1.8168755 -0.2331543 -0.3471680 0.3054619 0.0611572 -0.3872070 1.5798187 0.3770752 0.3247070 -1.7290001 0.4947510 0.4306641 -1.5108681 0.4176025 0.0019531 -0.7967529 0.5229492 0.3510742 -2.3540115 0.3540039 0.6818848 1.1755409 0.5301514 0.3754883 1.6100731 0.5705566 0.2033691 0.3701591 0.4511719 0.6130371 1.9746399 0.1882324 0.8471680 2.2955208 -0.3029785 0.6557617 1.1764793 -0.3750000 0.6467285 1.6143341 -0.0716553 0.7500000 0.7436790 -0.5832520 0.3933105 1.4935341 0.3405762 0.7619629 -1.8162231 0.3289795 0.9538574 -2.3388481 -0.4985352 0.5634766 2.3658485 -0.2554932 0.6953125 2.3539352 0.5386963 0.3698730 -0.0244446 1.1107178 -0.1052246 -2.3124199 1.0566406 0.0341797 -2.3108330 -0.4584961 -0.0334473 -0.4102364 -0.3814697 -0.2106934 -0.7913399 -0.0485840 -0.4680176 -0.8691025 -1.1107178 -0.3437500 -2.3310509 -0.9566650 -0.4821777 -2.3385582 0.4064941 -0.3325195 -1.1540985 -0.5426025 0.2568359 -0.8025322 0.1472168 -0.4230957 -0.0571518 0.5093994 0.7106934 -0.3324738 0.3757324 -0.1088867 -1.1685410 -0.7337646 0.5874023 -2.3431091 -0.6741943 0.3549805 -1.8720398 0.2626953 0.7341309 -0.6554489 -0.8533936 0.0168457 -2.3438301 0.9786377 0.5812988 -2.3394966 0.5849609 0.7185059 -2.3512688 0.4392090 -0.1572266 0.3413506 0.6545410 0.1325684 2.0348587 0.7481689 -1.2783203 -2.3169708 } } phBound { Type BoundBVH AABBMin 1322.4350586 2730.6757813 48.7553596 AABBMax 1323.7711182 2732.2404785 54.0706673 Radius 2.84982 Centroid 1323.1030273 2731.4580078 51.4130135 CG 988.7073975 2040.8447266 39.1481018 Margin 0.005 GeometryCenter 1323.1030273 2731.4580078 51.4130135 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 137 { Tri 0 { Vertices 73 46 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 69 73 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 17 68 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 68 17 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 63 61 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 69 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 15 17 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 45 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 45 17 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 45 63 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 45 59 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 45 1 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 63 59 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 61 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 59 1 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 47 46 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 46 73 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 73 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 42 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 54 44 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 42 43 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 54 42 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 42 39 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 39 18 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 16 15 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 39 15 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 61 72 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 61 60 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 72 33 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 34 72 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 33 72 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 58 62 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 45 47 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 62 56 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 45 62 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 2 45 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 45 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 60 49 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 60 1 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 58 47 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 67 58 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 32 67 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 32 44 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 32 54 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 55 54 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 33 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 32 33 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 2 74 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 62 58 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 56 58 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 57 58 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 58 67 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 9 67 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 8 7 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 56 57 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 0 49 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 0 48 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 7 67 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 30 10 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 32 30 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 30 31 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 30 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 34 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 34 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 48 31 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 6 57 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 23 57 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 70 57 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 2 57 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 2 70 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 48 0 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 2 71 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 48 51 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 10 50 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 31 51 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 50 10 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 6 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 52 8 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 8 52 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 3 52 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 50 28 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 3 6 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 71 70 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 25 71 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 51 28 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 51 48 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 26 28 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 26 71 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 48 71 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 29 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 26 25 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 27 26 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 40 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 41 4 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 3 28 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 41 40 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 41 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 53 35 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 6 5 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 35 23 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 23 35 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 22 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 24 22 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 21 38 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 29 24 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 53 4 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 14 64 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 5 4 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 4 41 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 12 14 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 117 { Vertices 41 27 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 118 { Vertices 27 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 119 { Vertices 38 27 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 120 { Vertices 64 35 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 121 { Vertices 64 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 122 { Vertices 35 37 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 123 { Vertices 11 14 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 124 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 125 { Vertices 13 27 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 126 { Vertices 20 38 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 127 { Vertices 38 20 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 128 { Vertices 64 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 129 { Vertices 64 66 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 130 { Vertices 36 35 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 131 { Vertices 65 64 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 132 { Vertices 35 36 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 133 { Vertices 19 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 134 { Vertices 19 22 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 135 { Vertices 22 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 136 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 75 { -0.2971191 0.2624512 -1.0244942 -0.3127441 0.3903809 -1.7619133 -0.4627686 0.0280762 -0.9877548 0.3569336 -0.4550781 0.5057831 0.3686523 -0.4809570 1.0613174 0.1757813 -0.5925293 0.6431007 -0.0108643 -0.5278320 0.4586639 0.2687988 -0.3735352 -0.8098259 0.3027344 -0.3776855 -0.5806580 0.0676270 -0.4592285 -0.9257240 0.3823242 0.0590820 -0.8166618 0.4763184 -0.3930664 2.4038582 0.4941406 -0.2416992 1.5389252 0.3187256 -0.1672363 2.4421616 0.3378906 -0.5571289 1.9787216 -0.0385742 0.6401367 -2.5106163 -0.4089355 0.5607910 -2.5621834 -0.5109863 0.1447754 -2.5332680 0.3902588 0.7824707 -2.5416718 -0.2833252 -0.0646973 2.4648170 0.1215820 -0.0578613 2.4530373 -0.0823975 -0.0424805 2.0726318 -0.2867432 -0.2656250 2.0084610 -0.3438721 -0.2416992 0.8085899 -0.4018555 -0.1826172 0.9086761 -0.2362061 0.1069336 0.8023300 0.0816650 0.1845703 0.6583405 0.2358398 0.0944824 1.0233421 0.4534912 -0.0688477 0.5938416 -0.1918945 0.1733398 0.9151840 0.4296875 0.1857910 -0.9783630 0.2600098 0.2832031 -0.8454933 0.4082031 0.1801758 -1.5137978 0.3937988 0.3215332 -1.6013641 0.2419434 0.3781738 -1.2616501 -0.3378906 -0.5441895 2.2496529 -0.2567139 -0.5524902 2.6500778 -0.3946533 -0.4152832 2.2663765 -0.1103516 0.1254883 1.2941895 0.6680908 0.4602051 -2.5750313 0.4232178 -0.2416992 0.7259674 0.3851318 -0.1457520 1.0351219 0.4367676 0.1638184 -2.5485878 0.5380859 -0.0192871 -2.6256104 0.2526855 -0.1975098 -1.8824272 -0.4681396 -0.1291504 -1.8805313 -0.0538330 -0.2968750 -1.9313545 0.0675049 -0.3981934 -1.7469177 -0.0332031 0.3320313 -0.2830391 0.0494385 0.4763184 -1.1661797 0.4703369 -0.1035156 -0.3260384 0.3049316 0.1784668 -0.2715073 0.1678467 -0.5568848 0.1824608 0.0377197 -0.5964355 1.3902397 0.4510498 0.1689453 -1.7325020 0.4987793 0.1662598 -1.5925484 -0.2813721 -0.3432617 -1.2473984 -0.2003174 -0.3369141 -1.1064568 0.0656738 -0.3496094 -1.1558800 -0.3621826 0.4873047 -1.9461823 -0.0512695 0.5290527 -1.9278984 -0.3383789 0.3845215 -2.1298790 -0.1007080 -0.3122559 -1.5424652 -0.4831543 0.1953125 -2.0666161 0.0286865 -0.7822266 2.3020439 0.3488770 -0.5527344 2.6576538 0.0773926 -0.7429199 2.6541138 0.3714600 -0.2067871 -1.0481339 -0.4290771 -0.0585938 -2.5559196 -0.6679688 0.1420898 -2.5995789 -0.3470459 -0.1403809 -0.1428375 -0.1300049 0.2434082 0.1755409 0.3121338 0.5541992 -2.3689308 0.2247314 -0.3776855 -2.6576538 -0.4248047 -0.0517578 -1.3769760 } } phBound { Type BoundBVH AABBMin 1322.4416504 2728.0314941 48.6904449 AABBMax 1326.3206787 2732.3383789 61.6878548 Radius 7.11563 Centroid 1324.3811035 2730.1850586 55.1891479 CG 1323.6224365 2730.5891113 55.6946106 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 3 { Capsule 0 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.623657 } Capsule 1 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.582103 } Capsule 2 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.656569 } } ComputePolyNeighbors True Vertices 6 { 1325.1881104 2729.1323242 60.7596588 1323.6502686 2730.4350586 58.6330872 1323.3432617 2730.8378906 57.5689240 1323.2016602 2730.8847656 54.2817078 1323.1492920 2731.2177734 53.5506744 1323.1492920 2731.6533203 49.3754425 } } phBound { Type BoundBVH AABBMin 1288.5496826 2755.9594727 42.1853256 AABBMax 1290.9884033 2758.3203125 79.3835220 Radius 18.6764 Centroid 1289.7690430 2757.1398926 60.7844238 CG 1289.7675781 2757.1577148 60.7877541 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.997051 } } ComputePolyNeighbors True Vertices 2 { 1289.7231445 2757.1489258 78.3838196 1289.8149414 2757.1308594 43.1850243 } } phBound { Type BoundBVH AABBMin 1288.5322266 2755.9855957 43.8102303 AABBMax 1292.1956787 2758.6708984 51.2853661 Radius 4.37348 Centroid 1290.3640137 2757.3281250 47.5477982 CG 988.4822998 2112.2507324 39.2048454 Margin 0.005 GeometryCenter 1290.3640137 2757.3281250 47.5477982 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 51 57 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 4 51 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 51 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 61 51 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 61 50 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 17 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 38 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 38 18 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 39 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 38 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 38 52 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 3 50 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 18 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 3 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 45 39 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 0 4 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 0 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 39 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 0 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 45 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 0 2 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 30 45 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 38 40 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 40 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 40 60 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 6 57 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 60 40 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 40 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 33 6 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 25 23 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 22 60 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 32 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 23 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 57 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 57 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 5 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 5 6 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 33 47 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 5 7 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 7 5 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 47 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 39 30 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 58 34 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 39 34 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 34 36 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 41 34 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 33 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 36 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 32 33 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 29 30 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 27 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 29 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 26 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 58 31 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 58 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 37 35 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 36 37 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 46 47 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 26 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 26 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 28 26 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 29 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 28 15 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 55 29 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 55 53 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 31 29 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 26 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 46 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 46 54 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 54 46 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 35 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 31 49 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 12 11 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 42 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 42 11 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 43 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 53 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 49 21 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 53 55 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 21 44 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 9 8 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 49 53 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 49 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 43 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 56 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 56 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 55 56 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 56 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 48 49 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 48 19 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 44 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.0792236 -1.0466309 -1.4709930 -0.6906738 -1.3288574 -2.9353104 -0.3400879 -1.3378906 -1.6863556 -1.2974854 -0.6743164 -2.2779274 -0.9904785 -1.1972656 -2.9071388 0.2203369 -1.0629883 -1.7177277 0.1065674 -1.0122070 -3.3500710 -0.4393311 -1.2290039 -0.8806801 -0.3345947 0.5002441 3.3479042 -0.9830322 0.2343750 2.2818031 -0.6732178 0.4731445 3.7375679 0.0515137 -0.9960938 1.3678741 -0.5443115 -1.0944824 1.9375381 -0.7186279 -0.8383789 3.4683609 -1.0091553 -0.4870605 3.2388535 -1.2266846 -0.4716797 1.9856796 -1.7357178 0.5402832 -3.7375679 -1.8317871 0.0783691 -3.6767693 -1.3607178 0.0397949 -3.1979027 0.4345703 -0.0461426 3.1446304 0.4609375 -0.4519043 3.3579407 0.3843994 -0.4199219 2.1438942 1.5079346 0.3464355 -3.6550941 0.7183838 -0.1962891 -3.2442131 1.8316650 0.1535645 -3.5907593 0.4385986 -0.8483887 -3.6801910 -0.9605713 -1.1228027 -0.3088455 -1.1516113 -0.8415527 -0.2992630 -1.1632080 -0.6657715 0.5011673 -1.1672363 -0.1491699 -0.3458023 -1.0144043 -0.0002441 -1.4129295 -0.5581055 0.4702148 0.1635208 0.5478516 0.1359863 -3.1375580 0.4726563 -0.3247070 -2.1911163 -0.1661377 0.3654785 -1.1591263 0.2946777 0.3281250 -0.3371353 0.3049316 -0.0219727 -1.1499977 0.5236816 -0.3051758 -0.5799904 -0.8714600 0.5817871 -3.3123131 -0.8911133 0.3806152 -2.6955376 -0.4801025 0.4758301 -2.9496841 -0.1469727 0.3884277 -2.7565651 -0.0461426 -1.0842285 2.8790741 -0.9246826 -0.9855957 1.9075394 0.1663818 -0.8342285 2.4085350 -1.2839355 -0.4416504 -1.9579582 0.3953857 -0.7246094 -0.5394936 0.4493408 -0.6330566 -1.4363136 0.1481934 0.2839355 3.3671799 0.0999756 0.3435059 2.1348801 -1.4747314 -0.3132324 -3.3304520 -1.3259277 -1.1628418 -3.6488228 -0.7255859 0.9528809 -3.6197319 -0.5004883 0.4160156 1.0448265 0.3920898 -0.0810547 0.2256889 -1.1523438 -0.1174316 1.9009247 -1.0675049 -0.0314941 3.5591621 -0.4921875 -1.3425293 -3.6258926 -0.2872314 0.4741211 -0.6008644 -1.2219238 1.3427734 -3.6819038 0.5303955 0.4758301 -3.5826607 -1.5377197 -0.6040039 -3.6760826 } } phBound { Type BoundBVH AABBMin 1279.5102539 2776.9841309 52.5074615 AABBMax 1303.8017578 2801.2756348 76.7990570 Radius 21.0371 Centroid 1291.6560059 2789.1298828 64.6532593 CG 1291.6534424 2789.1408691 64.6535873 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 52 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Sphere 0 { MaterialIndex 0 Center 0 Radius 12.1458 } } ComputePolyNeighbors True Vertices 1 { 1291.6560059 2789.1298828 64.6532593 } } phBound { Type BoundBVH AABBMin 1280.3996582 2781.4733887 44.5176926 AABBMax 1301.3840332 2794.6926270 70.3503571 Radius 17.9054 Centroid 1290.8918457 2788.0830078 57.4340248 CG 1290.8594971 2787.8632813 56.3655243 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 25 { Capsule 0 { MaterialIndex 1 CenterTop 48 CenterBottom 49 Radius 0.668574 } Capsule 1 { MaterialIndex 1 CenterTop 46 CenterBottom 47 Radius 0.501597 } Capsule 2 { MaterialIndex 1 CenterTop 44 CenterBottom 45 Radius 0.461327 } Capsule 3 { MaterialIndex 1 CenterTop 42 CenterBottom 43 Radius 0.761572 } Capsule 4 { MaterialIndex 0 CenterTop 40 CenterBottom 41 Radius 0.821579 } Capsule 5 { MaterialIndex 0 CenterTop 38 CenterBottom 39 Radius 0.587549 } Capsule 6 { MaterialIndex 0 CenterTop 36 CenterBottom 37 Radius 0.440914 } Capsule 7 { MaterialIndex 0 CenterTop 34 CenterBottom 35 Radius 0.431561 } Capsule 8 { MaterialIndex 0 CenterTop 32 CenterBottom 33 Radius 0.561376 } Capsule 9 { MaterialIndex 0 CenterTop 30 CenterBottom 31 Radius 0.27529 } Capsule 10 { MaterialIndex 1 CenterTop 28 CenterBottom 29 Radius 2.31697 } Capsule 11 { MaterialIndex 0 CenterTop 26 CenterBottom 27 Radius 0.485638 } Capsule 12 { MaterialIndex 1 CenterTop 24 CenterBottom 25 Radius 0.317229 } Capsule 13 { MaterialIndex 0 CenterTop 22 CenterBottom 23 Radius 0.360864 } Capsule 14 { MaterialIndex 1 CenterTop 20 CenterBottom 21 Radius 0.319098 } Capsule 15 { MaterialIndex 0 CenterTop 18 CenterBottom 19 Radius 0.418031 } Capsule 16 { MaterialIndex 1 CenterTop 16 CenterBottom 17 Radius 1.03372 } Capsule 17 { MaterialIndex 1 CenterTop 14 CenterBottom 15 Radius 1.01 } Capsule 18 { MaterialIndex 0 CenterTop 12 CenterBottom 13 Radius 1.28628 } Capsule 19 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.410656 } Capsule 20 { MaterialIndex 0 CenterTop 8 CenterBottom 9 Radius 0.398591 } Capsule 21 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.363336 } Capsule 22 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.255376 } Capsule 23 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.370823 } Capsule 24 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.706482 } } ComputePolyNeighbors True Vertices 50 { 1300.1920166 2792.5925293 69.3711853 1292.4068604 2788.6867676 56.2277603 1292.0303955 2790.3635254 58.5740891 1291.4193115 2790.0437012 61.8936081 1295.8457031 2786.8581543 59.4071922 1293.6271973 2789.2932129 57.5899849 1292.2641602 2790.1945801 56.1181107 1292.1000977 2790.2712402 57.9942398 1297.5606689 2791.5930176 59.1004868 1294.1236572 2789.0251465 54.0917587 1292.9033203 2793.9924316 55.2896996 1291.5068359 2791.2487793 52.8766365 1292.4426270 2789.1730957 56.8626328 1292.1496582 2788.7565918 52.7147064 1292.0124512 2788.6633301 45.5625496 1291.9025879 2788.4968262 51.2373695 1296.3420410 2787.4975586 56.5734863 1293.1865234 2788.2993164 51.4843750 1292.7542725 2786.6738281 53.8818169 1292.3472900 2787.7128906 52.7217293 1293.1768799 2784.8842773 54.1994514 1292.6444092 2786.9077148 53.6305275 1293.1276855 2784.9487305 57.0823212 1292.6743164 2786.7836914 54.0699005 1294.0927734 2781.9980469 57.4701881 1293.2358398 2784.5146484 54.1971092 1291.5502930 2787.7780762 54.6509247 1290.4194336 2785.6789551 57.3987808 1292.3077393 2788.2983398 54.5038147 1289.0018311 2787.2929688 59.5675659 1290.3959961 2785.7014160 57.9411736 1289.3486328 2786.2180176 61.3539467 1291.1362305 2788.5476074 55.8086777 1286.6225586 2788.8884277 65.1600494 1288.0758057 2787.7475586 57.4818993 1282.7606201 2782.9921875 62.3111305 1287.6794434 2787.5930176 56.9305305 1282.7238770 2783.3864746 57.5123329 1287.5825195 2788.3420410 56.8181534 1281.2202148 2787.3581543 58.8940659 1286.5927734 2788.7055664 59.9089966 1282.1528320 2785.1538086 64.8880768 1290.9779053 2788.4438477 51.8414154 1288.1212158 2787.8139648 57.1389008 1289.0488281 2787.8422852 53.5782433 1285.6103516 2788.6835938 53.9739113 1290.7055664 2792.5327148 55.9167633 1291.6010742 2789.3178711 50.2357025 1290.7607422 2787.5363770 52.1598244 1289.6850586 2784.7214355 52.1329002 } } phBound { Type BoundBVH AABBMin 1290.2749023 2787.2585449 45.6433258 AABBMax 1294.1627197 2790.5705566 51.5152855 Radius 3.89116 Centroid 1292.2187500 2788.9145508 48.5793076 CG 964.6159668 2082.7399902 40.1315384 Margin 0.005 GeometryCenter 1292.2187500 2788.9145508 48.5793076 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 113 { Tri 0 { Vertices 43 62 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 62 43 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 53 62 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 45 46 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 43 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 46 45 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 44 11 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 43 65 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 11 44 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 65 12 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 65 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 2 1 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 18 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 18 21 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 21 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 53 19 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 19 53 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 20 53 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 53 26 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 53 46 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 22 16 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 15 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 23 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 23 21 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 34 24 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 21 26 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 14 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 14 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 0 59 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 14 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 29 42 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 29 14 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 54 55 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 29 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 14 59 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 58 56 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 58 55 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 54 56 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 50 47 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 24 50 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 50 24 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 49 50 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 50 61 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 50 8 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 50 69 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 56 28 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 28 9 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 29 9 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 28 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 49 8 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 49 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 26 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 5 46 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 34 26 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 24 34 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 13 14 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 33 42 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 33 29 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 47 48 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 47 24 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 52 48 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 51 48 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 3 11 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 46 11 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 5 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 35 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 25 63 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 52 34 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 35 25 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 11 13 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 64 13 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 42 41 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 41 42 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 51 33 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 30 33 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 52 63 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 63 68 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 4 6 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 6 64 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 4 3 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 64 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 5 4 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 5 27 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 57 25 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 25 57 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 38 39 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 39 38 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 27 38 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 67 57 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 39 27 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 71 40 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 6 41 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 39 41 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 71 41 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 72 41 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 37 66 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 41 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 41 32 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 36 37 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 32 70 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 33 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 30 51 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 68 60 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 30 60 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 70 32 31 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 73 { 0.3892822 -0.8303223 -2.6078453 0.3032227 -1.1430664 -2.3826637 0.4620361 -1.6560059 -2.7056923 -1.0142822 -0.6787109 0.5581093 -0.9825439 -0.8188477 1.0746880 -1.1173096 -0.3698730 0.0493279 -0.6475830 -1.1154785 0.9365158 1.6599121 1.4392090 -2.8755875 0.8200684 1.1130371 -2.9133987 1.1265869 0.7016602 -2.5315895 1.9439697 1.1301270 -2.8366966 -0.4207764 -0.9375000 -1.5167122 -0.1264648 -0.9072266 -2.1387558 -0.0252686 -0.8479004 -1.1394730 0.5848389 -0.7697754 -2.1601715 -1.0526123 0.9060059 -2.8605309 -0.6115723 0.7805176 -2.8777351 -0.8906250 1.4790039 -2.9359818 -1.4581299 0.4938965 -2.8604431 -1.9438477 0.0144043 -2.8899231 -1.1925049 0.1704102 -2.4478951 -0.8732910 0.6425781 -2.2129517 0.0206299 0.5805664 -2.7828445 -0.5522461 0.4338379 -2.3357124 -0.0422363 0.3198242 -1.8672523 -1.0201416 0.2177734 0.5412636 -1.0844727 0.1994629 -1.4151917 -1.2618408 -0.0083008 1.9046135 1.5516357 0.4375000 -2.8065872 0.6979980 0.2875977 -2.0805130 0.3397217 0.4409180 1.0033607 0.3756104 0.4665527 2.4142036 0.6739502 0.2897949 1.4104385 0.4892578 -0.2260742 1.0494156 -0.6644287 0.6059570 -1.4384880 -1.0522461 0.5380859 -1.1117859 0.9956055 -0.1223145 2.6090965 1.0865479 -0.2927246 2.2411728 -1.4199219 -0.2751465 2.6348114 -0.8815918 -0.9987793 1.9928780 -1.5178223 -0.5017090 2.9359779 0.5131836 -0.7548828 1.4494171 0.4238281 -0.5295410 -1.1482544 -0.9218750 -1.0402832 -2.7116966 -0.5606689 -1.0219727 -2.4266624 -0.8708496 -0.7321777 -2.3419838 -1.0329590 -0.4125977 -1.5304222 0.4715576 0.4038086 -1.8134880 0.2938232 0.2084961 -0.8348122 0.6728516 0.8645020 -2.8542595 0.5914307 0.6904297 -2.3171616 0.1827393 0.3449707 -0.3775558 -0.3409424 0.5437012 -0.3661766 -1.2392578 -0.1589355 -2.0264816 0.6026611 -0.1989746 -2.3674316 0.7545166 -0.4428711 -2.1301537 0.6634521 -0.0366211 -2.6051559 -0.8183594 0.5461426 1.3816757 1.6856689 -0.6486816 -2.7349930 1.4739990 -0.9934082 -2.6996918 -0.2091064 0.4670410 2.1656380 0.2933350 0.7243652 -2.7571259 -1.4735107 -0.2683105 -2.6003151 -0.5736084 0.4550781 1.0733414 -0.4320068 -0.9250488 0.5793457 -0.0513916 -1.2385254 -2.6601715 1.4263916 -1.0249023 2.9266586 -0.8585205 0.5605469 2.3476257 -0.2435303 0.6496582 1.5902786 -0.0446777 1.6560059 -2.8862495 0.5889893 0.1311035 2.6947594 -0.3857422 -1.0058594 2.6284523 0.8218994 -1.0336914 2.7894707 } } phBound { Type BoundBVH AABBMin 1242.1309814 2806.1767578 51.8980446 AABBMax 1248.8331299 2812.7558594 64.2549896 Radius 7.76044 Centroid 1245.4820557 2809.4663086 58.0765152 CG 1245.4824219 2809.4121094 58.0767746 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 2.80375 } } ComputePolyNeighbors True Vertices 2 { 1245.5234375 2809.4584961 54.7369232 1245.4406738 2809.4741211 61.4161072 } } phBound { Type BoundBVH AABBMin 1244.7038574 2808.2253418 47.1130333 AABBMax 1246.4541016 2809.9587402 52.2491035 Radius 2.84812 Centroid 1245.5789795 2809.0920410 49.6810684 CG 1245.6405029 2809.1342773 49.6850204 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.587092 } } ComputePolyNeighbors True Vertices 2 { 1245.6164551 2809.1230469 47.7144623 1245.5415039 2809.0610352 51.6476746 } } phBound { Type BoundBVH AABBMin 1244.7663574 2808.4333496 47.5273132 AABBMax 1246.2741699 2809.7062988 51.1706810 Radius 2.07172 Centroid 1245.5202637 2809.0698242 49.3489990 CG 930.5827637 2099.5854492 36.6217155 Margin 0.005 GeometryCenter 1245.5202637 2809.0698242 49.3489990 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 109 { Tri 0 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 13 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 20 19 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 20 29 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 57 17 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 17 57 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 56 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 31 56 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 20 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 17 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 13 29 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 21 13 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 13 14 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 45 22 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 45 14 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 50 45 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 68 52 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 63 52 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 63 64 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 50 51 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 51 64 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 13 3 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 1 64 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 51 14 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 4 1 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 4 14 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 4 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 24 18 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 25 43 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 16 15 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 18 24 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 53 40 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 43 39 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 24 39 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 49 17 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 16 38 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 38 16 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 42 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 70 63 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 27 70 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 48 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 26 28 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 46 55 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 54 47 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 53 54 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 39 43 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 42 39 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 53 55 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 46 65 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 48 64 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 46 48 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 46 47 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 46 28 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 3 2 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 37 3 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 36 31 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 29 31 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 29 36 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 49 60 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 60 59 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 2 3 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 62 3 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 62 11 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 36 34 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 49 38 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 41 40 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 40 41 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 42 58 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 38 58 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 44 58 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 44 42 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 58 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 1 0 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 0 65 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 41 55 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 6 65 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 0 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 6 41 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 2 11 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 11 7 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 66 67 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 59 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 34 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 35 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 32 35 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 33 37 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 32 33 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 33 71 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 62 37 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 61 11 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 69 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 35 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 35 58 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 44 41 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 44 23 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 44 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 23 41 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 5 10 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 5 23 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 7 69 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 5 69 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 10 5 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 72 { 0.0137939 0.5634766 0.0546761 -0.3745117 0.6013184 -0.5581207 -0.3875732 0.4665527 -0.3388443 -0.4851074 0.2954102 -0.3584671 -0.4862061 0.5383301 -0.5506706 0.6545410 0.3884277 1.2498055 0.3956299 0.4196777 0.4248466 0.2283936 0.4973145 0.4157829 0.4744873 0.4943848 1.5465851 0.6088867 0.3259277 1.5935631 0.7014160 0.3693848 1.4692497 -0.2609863 0.4165039 1.2335129 -0.1672363 0.4963379 1.1725807 -0.5731201 0.1882324 -1.1495667 -0.5155029 0.3034668 -0.8068085 0.1677246 -0.4978027 -1.6248703 0.2164307 -0.4494629 -1.2042198 0.0006104 -0.4248047 -1.2120590 0.3115234 -0.6364746 -1.6427193 -0.7539063 -0.0361328 -1.8216858 -0.6110840 0.0483398 -1.3216972 -0.7294922 0.1811523 -1.6130295 -0.5726318 0.2985840 -1.6751862 0.5532227 0.3586426 1.1048050 0.4176025 -0.4262695 -1.3923607 0.4926758 -0.3774414 -1.5733871 0.6365967 0.6364746 -1.5623817 0.3880615 0.5895996 -1.5101738 0.4699707 0.5566406 -1.2823906 -0.4792480 -0.1186523 -0.9051056 -0.3515625 -0.3466797 -1.5986290 -0.2164307 -0.4113770 -1.2054443 -0.5478516 -0.2900391 1.4899292 -0.5798340 -0.0476074 1.8216820 -0.5211182 -0.3955078 1.1091423 -0.2031250 -0.5927734 1.0662231 -0.4559326 -0.3032227 0.7702179 -0.5362549 -0.0810547 0.3765335 0.2342529 -0.4206543 -0.5765228 0.4046631 -0.3281250 -0.8550682 0.6723633 0.0117188 -0.9198952 0.6063232 -0.1245117 0.8016319 0.5281982 -0.2126465 -0.5852509 0.6156006 -0.3713379 -1.4345627 0.5919189 -0.3479004 1.4750862 -0.5452881 0.4533691 -1.6426620 0.5498047 0.4645996 -1.1307182 0.7144775 0.3552246 -1.3546104 0.2099609 0.4199219 -1.1961021 -0.0462646 -0.4833984 -0.8989334 -0.3475342 0.6218262 -1.4833221 -0.1959229 0.6032715 -0.8289909 -0.1843262 0.5810547 -1.4221611 0.7539063 -0.1096191 -1.4044266 0.6663818 0.1003418 -1.4171600 0.6905518 0.2221680 -1.1760330 -0.1556396 -0.4628906 -1.5545959 0.0671387 -0.5798340 -1.6903114 0.3931885 -0.4072266 1.1302681 -0.0516357 -0.4741211 0.7833405 -0.0278320 -0.4296875 0.0158157 -0.3956299 0.4250488 1.5236244 -0.4913330 0.3461914 1.5146713 -0.0388184 0.4921875 -1.4817619 0.2138672 0.4606934 -0.9006577 0.4393311 0.3430176 -0.3216629 -0.0581055 -0.4853516 1.4958229 -0.3198242 -0.4748535 1.4975471 -0.1093750 0.4907227 -1.5954590 0.2506104 0.5559082 1.1345520 0.2423096 0.4858398 -1.7428513 -0.5675049 0.1616211 1.5006065 } } phBound { Type BoundBVH AABBMin 1242.5023193 2835.5153809 43.4089088 AABBMax 1246.3835449 2837.8771973 58.3254547 Radius 7.79656 Centroid 1244.4428711 2836.6962891 50.8671799 CG 1244.7592773 2836.5952148 49.8774185 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 2 { Capsule 0 { MaterialIndex 1 CenterTop 2 CenterBottom 3 Radius 0.73225 } Capsule 1 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.522427 } } ComputePolyNeighbors True Vertices 4 { 1245.0295410 2836.8483887 49.0667686 1243.2634277 2836.2165527 57.7040596 1245.3988037 2836.8557129 48.5755157 1245.4215088 2836.9099121 44.1508179 } } phBound { Type BoundBVH AABBMin 1244.1342773 2835.8906250 43.7581787 AABBMax 1246.6588135 2837.5686035 50.0366592 Radius 3.48598 Centroid 1245.3964844 2836.7294922 46.8974190 CG 915.1463623 2084.6689453 31.7559319 Margin 0.005 GeometryCenter 1245.3964844 2836.7294922 46.8974190 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 115 { Tri 0 { Vertices 39 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 56 64 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 56 39 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 64 56 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 24 57 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 57 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 12 24 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 12 56 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 23 24 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 23 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 14 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 9 39 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 39 9 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 39 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 66 2 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 2 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 13 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 13 1 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 55 2 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 2 55 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 65 8 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 55 66 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 65 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 54 55 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 8 7 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 10 7 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 9 51 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 36 51 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 51 36 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 36 37 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 38 49 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 44 38 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 48 6 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 38 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 35 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 38 43 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 48 49 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 45 46 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 48 43 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 6 48 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 46 42 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 50 14 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 0 61 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 1 20 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 20 1 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 60 20 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 19 50 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 60 47 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 34 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 45 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 43 35 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 34 20 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 45 34 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 46 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 18 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 54 67 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 0 55 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 0 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 0 68 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 49 5 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 49 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 46 18 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 16 18 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 47 60 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 68 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 60 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 58 54 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 7 27 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 7 10 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 10 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 5 25 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 6 42 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 40 3 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 40 42 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 54 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 27 7 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 15 18 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 58 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 25 26 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 67 58 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 18 15 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 41 40 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 26 28 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 26 25 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 52 28 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 52 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 5 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 22 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 3 41 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 30 58 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 67 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 67 29 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 16 68 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 29 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 17 16 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 3 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 31 28 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 53 63 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 31 32 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 32 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 31 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 52 53 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 17 41 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 62 29 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 62 31 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 62 69 29 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 70 { -0.3352051 0.6000977 -2.6178246 -0.4567871 0.6691895 -2.6737251 -0.8337402 0.3854980 -2.7425842 0.5682373 -0.1433105 0.3008995 0.0013428 -0.1059570 2.4862480 0.3769531 -0.3010254 0.0674210 0.6146240 -0.1809082 -2.1818886 -0.3039551 -0.2614746 -1.3736954 -0.5386963 -0.1301270 -1.9312210 -0.3875732 -0.4543457 -2.4598389 -0.0996094 -0.4506836 -2.0897865 -1.0191650 0.5620117 -3.0888176 -0.9855957 0.3593750 -3.0431976 -0.6524658 0.6848145 -2.9879723 -0.4184570 0.8391113 -3.0323448 0.3118896 0.5317383 0.7702599 0.2448730 0.5715332 0.1139069 -0.0324707 0.5368652 2.6169624 0.6684570 0.2683105 -0.3530540 0.4118652 0.8208008 -2.9678993 0.3338623 0.6806641 -2.9441795 0.4149170 0.6484375 -3.0702820 -0.2725830 -0.2724609 2.4760666 -1.2540283 0.1220703 -3.1183052 -1.1091309 -0.0224609 -3.1080246 0.0628662 -0.3183594 0.8728333 -0.1547852 -0.2595215 0.9148979 -0.3229980 -0.1013184 0.0222816 -0.5761719 -0.1384277 2.1101456 -0.5366211 0.5747070 2.2799492 -0.4782715 0.3937988 1.5144920 -0.6899414 0.3210449 2.3277779 -0.7113037 0.2080078 2.2020569 1.2623291 0.2746582 -2.8969269 0.6823730 0.5500488 -2.9560890 1.2583008 0.0136719 -2.8783875 0.0601807 -0.6455078 -2.9110451 0.0910645 -0.8388672 -3.0368576 0.8687744 -0.2697754 -2.8674393 -0.9863281 -0.5307617 -3.1140785 0.6314697 -0.0043945 0.3101196 0.2381592 0.2275391 2.2899361 0.6925049 -0.0231934 -2.1569176 1.0626221 -0.0307617 -2.8451576 0.8204346 -0.5615234 -2.9245872 1.0093994 0.1735840 -2.8605232 0.7501221 0.1450195 -2.4940300 0.6447754 0.3405762 -2.7154999 0.8256836 -0.0659180 -2.6489449 0.7199707 -0.2365723 -2.6865921 -0.0870361 0.8332520 -3.0415649 0.0274658 -0.4616699 -2.4583969 -0.4857178 -0.2788086 2.5043983 -0.5756836 -0.2314453 2.5945816 -0.4318848 -0.0910645 -1.3921356 -0.5236816 0.2893066 -2.1216736 -1.0605469 -0.0676270 -2.9866295 -1.2622070 -0.0849609 -3.1314621 -0.3599854 0.0217285 0.7914848 -0.4475098 0.6433105 2.4906654 0.2590332 0.5761719 -2.4675217 -0.0135498 0.6657715 -2.5672112 -0.7669678 0.5930176 2.9684753 -0.7666016 0.2956543 2.5362854 -1.2331543 -0.3322754 -3.1392403 -0.6889648 -0.2116699 -2.4564743 -0.9893799 -0.0815430 -2.8005943 -0.2705078 0.3234863 -0.0640602 -0.0681152 0.5444336 0.0852852 -0.6594238 0.7243652 3.1392403 } } phBound { Type BoundBVH AABBMin 1230.7806396 2919.0495605 41.9658737 AABBMax 1232.8868408 2920.6274414 53.5408783 Radius 5.9352 Centroid 1231.8337402 2919.8383789 47.7533760 CG 1231.8247070 2919.4472656 47.0095177 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 2 { Capsule 0 { MaterialIndex 1 CenterTop 2 CenterBottom 3 Radius 0.54455 } Capsule 1 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.388512 } } ComputePolyNeighbors True Vertices 4 { 1232.0245361 2920.0131836 46.3677979 1232.2225342 2919.5893555 53.1264648 1232.2077637 2920.0087891 45.9424591 1231.4597168 2920.0488281 42.6167755 } } phBound { Type BoundBVH AABBMin 1230.4515381 2919.2897949 42.3115463 AABBMax 1232.4871826 2920.5500488 47.1377029 Radius 2.69369 Centroid 1231.4693604 2919.9199219 44.7246246 CG 931.4726563 2209.0083008 31.3991222 Margin 0.005 GeometryCenter 1231.4693604 2919.9199219 44.7246246 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 115 { Tri 0 { Vertices 57 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 64 56 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 24 57 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 56 64 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 39 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 56 39 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 9 39 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 39 9 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 39 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 65 8 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 55 66 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 65 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 23 24 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 23 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 12 24 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 14 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 13 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 13 1 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 50 14 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 12 56 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 2 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 66 2 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 0 61 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 55 2 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 2 55 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 54 55 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 36 37 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 44 38 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 38 49 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 38 43 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 48 49 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 38 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 45 46 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 35 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 19 50 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 34 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 34 20 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 45 34 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 45 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 43 35 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 36 51 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 51 36 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 9 51 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 10 7 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 60 20 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 20 1 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 1 20 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 46 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 48 43 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 60 47 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 48 6 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 6 48 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 46 42 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 18 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 46 18 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 8 7 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 0 55 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 0 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 0 68 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 49 5 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 49 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 6 42 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 16 18 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 47 60 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 68 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 60 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 54 67 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 7 27 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 7 10 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 27 7 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 10 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 5 25 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 40 42 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 40 3 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 54 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 58 54 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 15 18 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 58 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 25 26 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 67 58 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 18 15 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 41 40 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 26 28 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 26 25 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 52 28 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 5 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 22 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 3 41 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 3 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 30 58 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 67 29 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 67 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 16 68 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 29 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 17 16 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 17 41 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 52 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 32 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 31 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 31 32 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 31 28 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 53 63 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 52 53 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 62 29 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 62 31 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 62 69 29 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 70 { -0.2386475 0.4504395 -1.9581413 -0.3349609 0.5048828 -1.9818306 -0.6275635 0.3037109 -1.9741821 0.9035645 -0.1257324 0.0986061 0.8713379 -0.0832520 1.8259773 0.7203369 -0.2380371 -0.0464821 0.5063477 -0.1547852 -1.7722931 -0.0224609 -0.1909180 -1.0242157 -0.2860107 -0.0871582 -1.4074974 -0.2761230 -0.3320313 -1.8258286 -0.0029297 -0.3369141 -1.5921593 -0.8176270 0.4396973 -2.2066612 -0.7904053 0.2883301 -2.1765137 -0.5308838 0.5214844 -2.1878738 -0.3648682 0.6301270 -2.2578201 0.8157959 0.3825684 0.4867134 0.6545410 0.4140625 0.0039368 0.8858643 0.3955078 1.9259186 0.8734131 0.1777344 -0.4099388 0.2484131 0.5949707 -2.3366013 0.1923828 0.4926758 -2.3061562 0.2285156 0.4667969 -2.4130783 0.6666260 -0.1997070 1.8612442 -1.0043945 0.1188965 -2.1903992 -0.9011230 0.0075684 -2.2041359 0.6313477 -0.2426758 0.6064072 0.4820557 -0.1933594 0.6710777 0.2094727 -0.0712891 0.0258408 0.3863525 -0.0922852 1.6323318 0.4625244 0.4365234 1.7499428 0.3677979 0.3007813 1.1672974 0.3531494 0.2519531 1.8106804 0.3129883 0.1687012 1.7201691 0.8641357 0.1669922 -2.4107780 0.4399414 0.3867188 -2.3677864 0.8577881 -0.0268555 -2.3948860 -0.0340576 -0.4858398 -2.2322044 -0.0384521 -0.6301270 -2.3303642 0.5698242 -0.2275391 -2.3253860 -0.8259277 -0.3732910 -2.2247772 0.9544678 -0.0239258 0.0951157 1.0178223 0.1584473 1.6404991 0.5711670 -0.0395508 -1.7662773 0.7203369 -0.0546875 -2.3396454 0.5173340 -0.4428711 -2.3593941 0.6843262 0.0983887 -2.3442497 0.5588379 0.0839844 -2.0291290 0.4489746 0.2319336 -2.1803017 0.5815430 -0.0747070 -2.1558723 0.4940186 -0.1989746 -2.1670113 -0.1260986 0.6171875 -2.3155861 0.0251465 -0.3481445 -1.8883476 0.5167236 -0.1989746 1.9152260 0.4682617 -0.1616211 1.9964561 -0.1141357 -0.0607910 -1.0193901 -0.2974854 0.2241211 -1.5550346 -0.8459473 -0.0270996 -2.1202316 -1.0178223 -0.0346680 -2.1979752 0.3189697 0.0212402 0.6083374 0.5654297 0.4853516 1.8940659 0.2178955 0.4169922 -1.9362373 0.0051270 0.4907227 -1.9698029 0.4150391 0.4562988 2.3019981 0.3328857 0.2351074 1.9791565 -1.0042725 -0.2192383 -2.2069588 -0.4881592 -0.1437988 -1.7783813 -0.7623291 -0.0393066 -1.9914093 0.2434082 0.2429199 -0.0493011 0.4217529 0.4020996 0.0305901 0.5260010 0.5510254 2.4130783 } } phBound { Type BoundBVH AABBMin 1216.6745605 2905.3540039 39.2390671 AABBMax 1219.1455078 2907.7460938 74.4158401 Radius 17.6722 Centroid 1217.9100342 2906.5500488 56.8274536 CG 1217.8187256 2906.2800293 56.8227081 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.0081 } } ComputePolyNeighbors True Vertices 2 { 1217.8636475 2906.5593262 73.4048691 1217.9564209 2906.5407715 40.2500381 } } phBound { Type BoundBVH AABBMin 1216.6599121 2905.3835449 40.8392410 AABBMax 1220.3640137 2908.0986328 47.8801651 Radius 4.20317 Centroid 1218.5119629 2906.7412109 44.3597031 CG 930.5411987 2219.9055176 36.4181976 Margin 0.005 GeometryCenter 1218.5119629 2906.7412109 44.3597031 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 51 57 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 4 51 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 51 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 61 51 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 61 50 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 17 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 38 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 38 18 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 39 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 38 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 38 52 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 3 50 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 18 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 3 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 45 39 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 0 4 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 0 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 39 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 0 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 45 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 0 2 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 30 45 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 38 40 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 40 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 40 60 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 6 57 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 40 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 60 40 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 33 6 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 25 23 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 22 60 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 32 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 23 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 57 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 57 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 5 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 5 6 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 33 47 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 5 7 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 7 5 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 47 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 39 30 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 58 34 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 39 34 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 34 36 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 41 34 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 33 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 36 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 32 33 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 29 30 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 27 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 29 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 26 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 58 31 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 58 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 37 35 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 36 37 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 46 47 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 26 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 26 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 28 26 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 29 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 28 15 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 55 29 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 55 53 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 31 29 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 26 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 46 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 46 54 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 54 46 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 35 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 31 49 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 42 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 43 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 43 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 53 55 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 9 8 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 56 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 55 56 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 56 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 56 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 12 11 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 42 11 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 21 44 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 44 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 49 21 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 49 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 53 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 49 53 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 48 19 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 48 49 8 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.0910645 -1.0585938 -1.3855438 -0.6982422 -1.3439941 -2.7648048 -0.3437500 -1.3530273 -1.5884018 -1.3117676 -0.6821289 -2.1456070 -1.0014648 -1.2106934 -2.7382660 0.2227783 -1.0749512 -1.6179466 0.1079102 -1.0236816 -3.1554718 -0.4440918 -1.2429199 -0.8295212 -0.3382568 0.5053711 3.1534309 -0.9938965 0.2368164 2.1492615 -0.6805420 0.4780273 3.5204620 0.0522461 -1.0073242 1.2884178 -0.5502930 -1.1069336 1.8249931 -0.7265625 -0.8479004 3.2668953 -1.0202637 -0.4926758 3.0507164 -1.2402344 -0.4772949 1.8703346 -1.7548828 0.5461426 -3.5204620 -1.8520508 0.0788574 -3.4631920 -1.3757324 0.0400391 -3.0121422 0.4394531 -0.0468750 2.9619675 0.4660645 -0.4572754 3.1629944 0.3886719 -0.4250488 2.0193596 1.5246582 0.3498535 -3.4427795 0.7264404 -0.1989746 -3.0557671 1.8520508 0.1550293 -3.3821793 0.4434814 -0.8581543 -3.4664154 -0.9711914 -1.1354980 -0.2909050 -1.1643066 -0.8510742 -0.2818794 -1.1760254 -0.6735840 0.4720573 -1.1800537 -0.1511230 -0.3257179 -1.0255127 -0.0004883 -1.3308563 -0.5640869 0.4750977 0.1540222 0.5540771 0.1369629 -2.9553070 0.4780273 -0.3286133 -2.0638390 -0.1679688 0.3691406 -1.0917931 0.2979736 0.3312988 -0.3175507 0.3084717 -0.0224609 -1.0831985 0.5295410 -0.3090820 -0.5462990 -0.8809814 0.5878906 -3.1199112 -0.9008789 0.3842773 -2.5389595 -0.4853516 0.4807129 -2.7783432 -0.1484375 0.3923340 -2.5964432 -0.0465088 -1.0966797 2.7118378 -0.9348145 -0.9968262 1.7967339 0.1683350 -0.8437500 2.2686310 -1.2979736 -0.4467773 -1.8442268 0.3997803 -0.7331543 -0.5081558 0.4544678 -0.6403809 -1.3528824 0.1500244 0.2868652 3.1715889 0.1011963 0.3469238 2.0108719 -1.4909668 -0.3171387 -3.1369934 -1.3405762 -1.1760254 -3.4368706 -0.7335205 0.9631348 -3.4094696 -0.5059814 0.4201660 0.9841347 0.3964844 -0.0822754 0.2125778 -1.1649170 -0.1191406 1.7905045 -1.0792236 -0.0319824 3.3524208 -0.4975586 -1.3576660 -3.4152718 -0.2902832 0.4790039 -0.5659599 -1.2353516 1.3574219 -3.4680290 0.5363770 0.4809570 -3.3745537 -1.5546875 -0.6110840 -3.4625473 } } phBound { Type BoundBVH AABBMin 1187.2595215 2911.3483887 38.7466316 AABBMax 1192.9377441 2917.5500488 48.9343758 Radius 6.60479 Centroid 1190.0986328 2914.4492188 43.8405037 CG 1189.6931152 2915.5493164 44.4115753 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 7 { Capsule 0 { MaterialIndex 1 CenterTop 12 CenterBottom 13 Radius 0.535027 } Capsule 1 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.417787 } Capsule 2 { MaterialIndex 0 CenterTop 8 CenterBottom 9 Radius 0.447263 } Capsule 3 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.521972 } Capsule 4 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.405802 } Capsule 5 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.486925 } Capsule 6 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.4331 } } ComputePolyNeighbors True Vertices 14 { 1190.0805664 2917.0219727 48.4342804 1189.5415039 2916.9067383 45.2210999 1188.8485107 2913.4201660 44.7933426 1188.0191650 2912.1530762 48.1851578 1192.2563477 2915.1701660 47.0847397 1191.2026367 2915.6735840 45.2833328 1190.6953125 2915.8613281 44.8338013 1189.1782227 2915.4658203 42.6147614 1189.3377686 2916.7973633 44.5423622 1189.1380615 2915.5375977 42.4381523 1189.0834961 2915.2075195 42.5881538 1188.9560547 2913.9956055 44.2583885 1189.0520020 2915.4245605 42.1082764 1189.3557129 2915.6364746 39.3480530 } } phBound { Type BoundBVH AABBMin 1188.4694824 2914.7285156 38.9523125 AABBMax 1190.2845459 2916.4760742 42.7718239 Radius 2.28785 Centroid 1189.3769531 2915.6022949 40.8620682 CG 888.3854980 2178.1501465 30.7880764 Margin 0.005 GeometryCenter 1189.3769531 2915.6022949 40.8620682 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 93 { Tri 0 { Vertices 38 39 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 38 29 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 6 39 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 11 39 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 5 12 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 39 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 6 30 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 4 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 12 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 29 30 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 30 29 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 52 57 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 44 57 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 46 57 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 44 50 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 22 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 53 30 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 57 46 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 58 53 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 46 22 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 11 9 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 31 32 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 32 31 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 32 14 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 37 14 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 8 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 13 0 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 7 8 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 0 13 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 47 7 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 2 48 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 55 45 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 22 45 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 50 51 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 55 50 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 47 48 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 47 0 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 49 23 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 2 23 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 2 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 22 55 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 25 23 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 9 4 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 10 20 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 31 9 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 37 31 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 33 3 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 30 53 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 26 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 58 22 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 20 15 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 25 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 14 37 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 3 33 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 27 26 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 54 53 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 4 26 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 58 24 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 36 54 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 35 36 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 15 17 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 1 13 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 17 42 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 42 25 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 2 1 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 34 27 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 26 27 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 33 53 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 53 54 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 20 10 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 21 28 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 15 20 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 28 18 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 18 17 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 17 35 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 25 42 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 24 25 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 27 34 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 40 27 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 40 41 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 41 56 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 56 21 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 10 26 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 17 16 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 35 17 19 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 59 { 0.1138916 0.6970215 -1.5460167 0.0483398 0.5124512 -1.1687737 0.2049561 0.5070801 -1.1511955 -0.2850342 -0.5246582 -0.6733894 -0.6026611 -0.2583008 -0.7884750 -0.2886963 -0.3708496 -1.1292915 -0.1456299 -0.5004883 -1.5906601 -0.0867920 0.8500977 -1.8313332 -0.3385010 0.6733398 -1.8213120 -0.5750732 -0.1145020 -1.4368706 -0.7896729 -0.2941895 0.9417229 -0.7103271 -0.2619629 -1.8837738 -0.4913330 -0.2346191 -1.4402313 -0.2141113 0.4592285 -1.4141273 -0.4333496 0.4133301 -1.6980057 -0.4608154 0.2641602 0.3752289 -0.2879639 0.3713379 1.5938377 -0.1208496 0.1835938 1.2039948 -0.3485107 0.1809082 1.1834145 0.0233154 0.1503906 1.6781425 -0.7648926 -0.0561523 0.3886719 -0.7849121 -0.2053223 1.3336029 0.4874268 -0.0541992 -1.1668549 0.5379639 0.3664551 -1.5197945 0.3170166 0.0378418 -0.3414497 0.1566162 0.2917480 -0.2638664 -0.5966797 -0.4541016 0.4036713 -0.4559326 -0.7802734 1.3976860 -0.6104736 0.0241699 1.3132629 -0.1352539 -0.6232910 -1.8946342 0.0098877 -0.5625000 -1.5563965 -0.5936279 0.0471191 -1.4230080 -0.7845459 0.0268555 -1.8559914 -0.1994629 -0.5942383 -0.0792351 0.0340576 -0.7097168 1.4716721 0.1501465 -0.1384277 1.1801147 0.1735840 -0.2729492 1.1343307 -0.5281982 0.2233887 -1.4162903 -0.4715576 -0.4589844 -1.9097557 -0.2364502 -0.3869629 -1.6268997 -0.7069092 -0.5954590 1.3873672 -0.8815918 -0.6123047 1.9097557 -0.0687256 0.1940918 0.8403168 -0.4748535 -0.8737793 1.6306190 0.6717529 -0.5947266 -1.7895088 0.5231934 -0.2500000 -1.3510628 0.4396973 -0.3964844 -1.3739281 0.3914795 0.8737793 -1.7908287 0.3330078 0.7517090 -1.6560020 0.7634277 0.3999023 -1.7977295 0.8489990 -0.1530762 -1.7953911 0.9075928 0.1149902 -1.7836304 0.2738037 -0.6616211 -1.8480721 0.1279297 -0.5051270 -0.5343590 0.1011963 -0.5444336 1.0770874 0.6453857 -0.0852051 -1.4890137 -0.9074707 -0.3264160 1.6765213 0.3737793 -0.5334473 -1.5530968 0.2833252 -0.2551270 -0.4440536 } } phBound { Type BoundBVH AABBMin 1214.8074951 2884.6896973 44.1065445 AABBMax 1217.1424561 2886.9504395 79.7707748 Radius 17.906 Centroid 1215.9749756 2885.8200684 61.9386597 CG 1215.8826904 2885.7702637 61.9365273 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.952454 } } ComputePolyNeighbors True Vertices 2 { 1215.9311523 2885.8288574 78.8158035 1216.0187988 2885.8112793 45.0615158 } } phBound { Type BoundBVH AABBMin 1214.7933350 2884.7182617 45.6613884 AABBMax 1218.2929688 2887.2834473 52.8296051 Radius 4.1896 Centroid 1216.5432129 2886.0009766 49.2454987 CG 928.2175293 2202.1049805 40.1132507 Margin 0.005 GeometryCenter 1216.5432129 2886.0009766 49.2454987 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 51 57 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 4 51 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 51 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 61 51 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 61 50 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 17 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 38 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 38 18 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 39 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 38 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 38 52 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 38 40 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 40 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 40 60 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 6 57 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 40 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 60 40 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 33 6 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 25 23 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 22 60 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 32 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 23 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 3 50 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 18 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 3 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 45 39 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 0 4 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 0 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 39 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 0 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 45 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 0 2 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 30 45 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 57 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 57 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 5 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 5 6 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 33 47 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 5 7 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 7 5 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 47 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 39 30 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 58 34 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 39 34 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 34 36 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 41 34 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 33 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 36 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 32 33 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 29 30 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 27 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 29 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 26 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 58 31 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 58 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 37 35 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 36 37 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 46 47 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 26 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 26 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 28 26 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 29 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 28 15 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 55 29 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 55 53 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 31 29 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 26 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 46 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 46 54 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 54 46 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 35 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 31 49 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 12 11 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 42 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 42 11 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 43 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 53 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 49 21 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 53 55 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 21 44 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 9 8 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 49 53 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 49 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 43 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 56 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 56 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 55 56 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 56 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 48 49 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 48 19 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 44 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.0308838 -1.0002441 -1.4105988 -0.6597900 -1.2697754 -2.8147964 -0.3248291 -1.2785645 -1.6171188 -1.2393799 -0.6445313 -2.1843987 -0.9462891 -1.1440430 -2.7877769 0.2104492 -1.0158691 -1.6472015 0.1018066 -0.9672852 -3.2125244 -0.4196777 -1.1745605 -0.8445206 -0.3195801 0.4772949 3.2104416 -0.9390869 0.2236328 2.1881142 -0.6430664 0.4514160 3.5841064 0.0491943 -0.9519043 1.3117065 -0.5200195 -1.0458984 1.8579865 -0.6865234 -0.8012695 3.3259544 -0.9639893 -0.4655762 3.1058693 -1.1718750 -0.4511719 1.9041443 -1.6580811 0.5158691 -3.5841103 -1.7498779 0.0744629 -3.5258102 -1.2998047 0.0375977 -3.0666046 0.4150391 -0.0444336 3.0155144 0.4403076 -0.4321289 3.2200661 0.3671875 -0.4016113 2.0558662 1.4404297 0.3305664 -3.5050240 0.6861572 -0.1879883 -3.1110153 1.7497559 0.1462402 -3.4433327 0.4189453 -0.8107910 -3.5290909 -0.9176025 -1.0727539 -0.2961655 -1.1000977 -0.8041992 -0.2869797 -1.1112061 -0.6364746 0.4805870 -1.1149902 -0.1428223 -0.3316078 -0.9689941 -0.0004883 -1.3549194 -0.5330811 0.4487305 0.1568031 0.5234375 0.1293945 -3.0087395 0.4515381 -0.3105469 -2.1011581 -0.1586914 0.3488770 -1.1115341 0.2814941 0.3129883 -0.3232956 0.2913818 -0.0214844 -1.1027832 0.5002441 -0.2919922 -0.5561790 -0.8323975 0.5554199 -3.1763191 -0.8513184 0.3630371 -2.5848656 -0.4586182 0.4541016 -2.8285789 -0.1403809 0.3706055 -2.6433868 -0.0440674 -1.0361328 2.7608643 -0.8833008 -0.9418945 1.8292160 0.1590576 -0.7971191 2.3096428 -1.2264404 -0.4221191 -1.8775711 0.3776855 -0.6926270 -0.5173454 0.4293213 -0.6049805 -1.3773460 0.1416016 0.2709961 3.2289276 0.0955811 0.3278809 2.0472221 -1.4088135 -0.2995605 -3.1937103 -1.2666016 -1.1110840 -3.4990082 -0.6931152 0.9099121 -3.4711151 -0.4780273 0.3969727 1.0019264 0.3745117 -0.0776367 0.2164192 -1.1007080 -0.1125488 1.8228722 -1.0197754 -0.0302734 3.4130249 -0.4702148 -1.2827148 -3.4770203 -0.2744141 0.4523926 -0.5761986 -1.1672363 1.2824707 -3.5307312 0.5065918 0.4543457 -3.4355659 -1.4689941 -0.5773926 -3.5251541 } } phBound { Type BoundBVH AABBMin 1165.2517090 2841.5905762 41.9676399 AABBMax 1188.1362305 2864.4753418 64.8522415 Radius 19.8187 Centroid 1176.6939697 2853.0329590 53.4099426 CG 1176.6832275 2853.0185547 53.4093933 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 52 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Sphere 0 { MaterialIndex 0 Center 0 Radius 11.4423 } } ComputePolyNeighbors True Vertices 1 { 1176.6939697 2853.0329590 53.4099388 } } phBound { Type BoundBVH AABBMin 1166.0891113 2845.8193359 34.4837837 AABBMax 1185.8581543 2858.2727051 58.7665520 Radius 16.849 Centroid 1175.9736328 2852.0458984 46.6251678 CG 1175.9860840 2851.8564453 45.6219139 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 25 { Capsule 0 { MaterialIndex 1 CenterTop 48 CenterBottom 49 Radius 0.62985 } Capsule 1 { MaterialIndex 1 CenterTop 46 CenterBottom 47 Radius 0.472544 } Capsule 2 { MaterialIndex 1 CenterTop 44 CenterBottom 45 Radius 0.434607 } Capsule 3 { MaterialIndex 1 CenterTop 42 CenterBottom 43 Radius 0.717461 } Capsule 4 { MaterialIndex 0 CenterTop 40 CenterBottom 41 Radius 0.773992 } Capsule 5 { MaterialIndex 0 CenterTop 38 CenterBottom 39 Radius 0.553518 } Capsule 6 { MaterialIndex 0 CenterTop 36 CenterBottom 37 Radius 0.415376 } Capsule 7 { MaterialIndex 0 CenterTop 34 CenterBottom 35 Radius 0.406565 } Capsule 8 { MaterialIndex 0 CenterTop 32 CenterBottom 33 Radius 0.528861 } Capsule 9 { MaterialIndex 0 CenterTop 30 CenterBottom 31 Radius 0.259345 } Capsule 10 { MaterialIndex 1 CenterTop 28 CenterBottom 29 Radius 2.18277 } Capsule 11 { MaterialIndex 0 CenterTop 26 CenterBottom 27 Radius 0.457509 } Capsule 12 { MaterialIndex 1 CenterTop 24 CenterBottom 25 Radius 0.298855 } Capsule 13 { MaterialIndex 0 CenterTop 22 CenterBottom 23 Radius 0.339962 } Capsule 14 { MaterialIndex 1 CenterTop 20 CenterBottom 21 Radius 0.300616 } Capsule 15 { MaterialIndex 0 CenterTop 18 CenterBottom 19 Radius 0.393818 } Capsule 16 { MaterialIndex 1 CenterTop 16 CenterBottom 17 Radius 0.973847 } Capsule 17 { MaterialIndex 1 CenterTop 14 CenterBottom 15 Radius 0.9515 } Capsule 18 { MaterialIndex 0 CenterTop 12 CenterBottom 13 Radius 1.21178 } Capsule 19 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.38687 } Capsule 20 { MaterialIndex 0 CenterTop 8 CenterBottom 9 Radius 0.375504 } Capsule 21 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.342291 } Capsule 22 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.240584 } Capsule 23 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.349344 } Capsule 24 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.665562 } } ComputePolyNeighbors True Vertices 50 { 1184.7349854 2856.2941895 57.8438911 1177.4007568 2852.6149902 45.4916573 1177.0461426 2854.1945801 47.6964684 1176.4704590 2853.8933105 50.8164406 1180.6403809 2850.8920898 48.4795761 1178.5505371 2853.1865234 46.7717743 1177.2663574 2854.0356445 45.3882179 1177.1118164 2854.1079102 47.1517754 1182.2563477 2855.3525391 48.1912766 1179.0180664 2852.9335938 43.4838181 1177.8684082 2857.6132813 44.6098785 1176.5529785 2855.0288086 42.3419800 1177.4345703 2853.0729980 46.0880661 1177.1584473 2852.6809082 42.1897507 1177.0294189 2852.5927734 35.4682083 1176.9256592 2852.4360352 40.8014297 1181.1080322 2851.4946289 45.8166351 1178.1353760 2852.2500000 41.0336151 1177.7280273 2850.7187500 43.2868423 1177.3447266 2851.6977539 42.1963577 1178.1262207 2849.0329590 43.5854149 1177.6247559 2850.9387207 43.0506248 1178.0798340 2849.0932617 46.2945709 1177.6530762 2850.8222656 43.4636383 1178.9891357 2846.3137207 46.6591682 1178.1817627 2848.6848145 43.5832176 1176.5939941 2851.7592773 44.0094299 1175.5285645 2849.7817383 46.5920410 1177.3073730 2852.2490234 43.8711472 1174.1931152 2851.3017578 48.6299667 1175.5064697 2849.8027344 47.1018906 1174.5198975 2850.2890625 50.3091583 1176.2038574 2852.4838867 45.0977173 1171.9514160 2852.8051758 53.8861542 1173.3205566 2851.7299805 46.6701660 1168.3132324 2847.2504883 51.2085419 1172.9473877 2851.5847168 46.1518898 1168.2786865 2847.6223145 46.6987801 1172.8558350 2852.2900391 46.0466194 1166.8619385 2851.3632813 47.9972420 1171.9237061 2852.6325684 48.9509125 1167.7403564 2849.2873535 53.6308594 1176.0548096 2852.3859863 41.3688660 1173.3634033 2851.7927246 46.3477631 1174.2374268 2851.8195801 43.0014763 1170.9979248 2852.6120605 43.3734016 1175.7980957 2856.2385254 45.1993179 1176.6418457 2853.2097168 39.8598633 1175.8499756 2851.5312500 41.6681709 1174.8365479 2848.8789063 41.6428642 } } phBound { Type BoundBVH AABBMin 1175.3927002 2851.2702637 35.5440331 AABBMax 1179.0552979 2854.3901367 41.0626106 Radius 3.6607 Centroid 1177.2239990 2852.8300781 38.3033218 CG 879.0559692 2131.1901855 32.1784935 Margin 0.005 GeometryCenter 1177.2239990 2852.8300781 38.3033218 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 113 { Tri 0 { Vertices 43 62 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 62 43 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 53 62 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 45 46 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 43 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 46 45 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 44 11 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 43 65 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 11 44 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 65 12 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 65 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 2 1 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 18 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 18 21 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 21 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 53 19 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 19 53 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 20 53 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 53 26 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 53 46 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 22 16 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 15 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 23 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 23 21 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 34 24 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 21 26 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 14 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 14 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 0 59 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 14 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 29 42 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 29 14 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 54 55 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 29 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 14 59 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 58 56 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 58 55 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 54 56 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 50 47 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 24 50 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 50 24 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 49 50 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 50 61 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 50 8 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 50 69 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 56 28 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 28 9 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 29 9 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 28 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 49 8 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 49 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 26 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 5 46 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 34 26 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 24 34 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 13 14 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 33 42 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 33 29 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 47 48 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 47 24 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 52 48 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 51 48 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 3 11 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 46 11 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 5 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 35 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 25 63 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 52 34 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 35 25 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 11 13 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 64 13 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 42 41 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 41 42 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 51 33 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 30 33 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 52 63 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 63 68 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 4 6 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 6 64 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 4 3 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 64 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 5 4 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 5 27 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 57 25 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 25 57 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 38 39 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 39 38 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 27 38 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 67 57 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 39 27 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 71 40 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 6 41 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 39 41 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 71 41 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 72 41 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 37 66 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 41 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 41 32 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 36 37 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 32 70 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 33 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 30 51 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 68 60 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 30 60 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 70 32 31 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 73 { 0.3666992 -0.7822266 -2.4509850 0.2855225 -1.0766602 -2.2392731 0.4351807 -1.5598145 -2.5428619 -0.9555664 -0.6394043 0.5245209 -0.9256592 -0.7712402 1.0100136 -1.0526123 -0.3483887 0.0463600 -0.6101074 -1.0507813 0.8801537 1.5637207 1.3559570 -2.7025299 0.7725830 1.0485840 -2.7380676 1.0612793 0.6611328 -2.3792343 1.8312988 1.0649414 -2.6659813 -0.3964844 -0.8830566 -1.4254341 -0.1191406 -0.8544922 -2.0100441 -0.0238037 -0.7985840 -1.0708961 0.5509033 -0.7250977 -2.0301704 -0.9916992 0.8537598 -2.6883812 -0.5761719 0.7355957 -2.7045517 -0.8391113 1.3935547 -2.7592888 -1.3736572 0.4653320 -2.6882973 -1.8312988 0.0136719 -2.7160873 -1.1235352 0.1606445 -2.3005791 -0.8227539 0.6054688 -2.0797729 0.0194092 0.5471191 -2.6153679 -0.5202637 0.4089355 -2.1951447 -0.0397949 0.3012695 -1.7548752 -0.9611816 0.2053223 0.5086899 -1.0217285 0.1879883 -1.3300209 -1.1888428 -0.0078125 1.7899933 1.4617920 0.4123535 -2.6376839 0.6574707 0.2712402 -1.9553032 0.3200684 0.4155273 0.9429779 0.3538818 0.4394531 2.2689133 0.6348877 0.2729492 1.3255577 0.4608154 -0.2128906 0.9862633 -0.6259766 0.5710449 -1.3519173 -0.9914551 0.5070801 -1.0448761 0.9378662 -0.1152344 2.4520798 1.0235596 -0.2756348 2.1063004 -1.3376465 -0.2590332 2.4762497 -0.8305664 -0.9409180 1.8729439 -1.4300537 -0.4726563 2.7592888 0.4833984 -0.7111816 1.3621902 0.3991699 -0.4987793 -1.0791512 -0.8685303 -0.9799805 -2.5485039 -0.5281982 -0.9628906 -2.2806206 -0.8204346 -0.6894531 -2.2010384 -0.9731445 -0.3886719 -1.4383202 0.4442139 0.3806152 -1.7043495 0.2767334 0.1965332 -0.7845726 0.6337891 0.8144531 -2.6824875 0.5570068 0.6506348 -2.1777115 0.1721191 0.3251953 -0.3548317 -0.3212891 0.5124512 -0.3441391 -1.1676025 -0.1496582 -1.9045258 0.5677490 -0.1872559 -2.2249565 0.7108154 -0.4172363 -2.0019608 0.6250000 -0.0344238 -2.4483719 -0.7709961 0.5146484 1.2985268 1.5878906 -0.6108398 -2.5703964 1.3885498 -0.9357910 -2.5372162 -0.1970215 0.4401855 2.0353088 0.2763672 0.6823730 -2.5911980 -1.3883057 -0.2526855 -2.4438248 -0.5404053 0.4287109 1.0087471 -0.4069824 -0.8713379 0.5444794 -0.0484619 -1.1667480 -2.5000801 1.3437500 -0.9653320 2.7505302 -0.8088379 0.5280762 2.2063446 -0.2293701 0.6120605 1.4945755 -0.0421143 1.5600586 -2.7125511 0.5548096 0.1237793 2.5325851 -0.3635254 -0.9475098 2.4702682 0.7742920 -0.9738770 2.6216011 } } phBound { Type BoundBVH AABBMin 1287.4826660 2895.3547363 44.4479294 AABBMax 1289.5454102 2896.2971191 56.7500534 Radius 6.2547 Centroid 1288.5140381 2895.8259277 50.5989914 CG 1288.5274658 2895.7687988 50.6091003 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.347887 } } ComputePolyNeighbors True Vertices 2 { 1289.1217041 2895.9035645 56.3673706 1287.9063721 2895.7482910 44.8306122 } } phBound { Type BoundBVH AABBMin 1287.4326172 2894.7119141 44.4977493 AABBMax 1288.6763916 2896.3449707 48.6318207 Radius 2.30783 Centroid 1288.0544434 2895.5283203 46.5647850 CG 976.2164307 2195.0043945 31.2890263 Margin 0.005 GeometryCenter 1288.0544434 2895.5283203 46.5647850 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 95 { Tri 0 { Vertices 18 33 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 17 18 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 31 32 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 34 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 32 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 32 54 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 38 19 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 34 19 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 54 51 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 47 35 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 48 47 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 48 51 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 50 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 50 20 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 17 20 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 44 24 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 48 56 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 0 2 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 2 1 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 48 2 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 23 47 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 24 23 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 38 39 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 26 38 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 34 35 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 16 19 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 17 3 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 5 20 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 5 44 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 5 24 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 5 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 47 26 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 23 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 26 47 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 39 38 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 19 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 26 14 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 26 29 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 3 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 6 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 6 22 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 25 5 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 22 40 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 26 25 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 29 25 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 16 15 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 15 7 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 4 3 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 39 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 16 39 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 29 37 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 15 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 36 37 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 49 36 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 49 25 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 22 6 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 21 40 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 11 13 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 11 14 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 6 7 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 7 10 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 10 7 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 21 7 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 13 10 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 42 40 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 49 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 37 36 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 49 27 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 30 8 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 9 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 12 8 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 27 11 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 10 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 30 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 27 49 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 41 55 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 42 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 42 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 12 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 28 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 27 28 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 9 12 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 52 9 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 45 46 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 53 45 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 12 28 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 55 41 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 52 43 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 41 42 43 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 57 { 0.2966309 0.7409668 -2.0670357 0.1121826 0.8166504 -2.0170097 -0.0336914 0.6755371 -1.7561569 -0.4256592 0.4067383 -0.6625938 -0.3105469 0.6359863 -0.4114418 -0.2055664 0.6923828 -0.5383797 -0.1893311 0.6162109 0.0985336 -0.1756592 0.4616699 0.8908539 -0.2233887 0.2978516 1.0731468 -0.1491699 0.4282227 1.4384918 -0.1392822 0.1706543 0.9973106 0.1800537 0.0000000 1.1569061 -0.0311279 0.1059570 1.3473129 0.0100098 0.0505371 0.7116051 0.2009277 -0.0283203 -0.4576645 -0.1988525 0.2666016 0.5261421 -0.2290039 0.0764160 -0.2935066 -0.4561768 0.0908203 -1.0479736 -0.5158691 0.1494141 -1.9338188 -0.2858887 -0.0395508 -1.1837273 -0.5258789 0.3571777 -1.0313606 -0.1059570 0.6401367 0.4737053 -0.0373535 0.7058105 -0.0566216 0.1976318 0.4189453 -1.5619431 -0.1909180 0.6926270 -1.3364067 0.1121826 0.5358887 -0.9557190 0.2999268 0.2075195 -0.5898666 0.5051270 0.1811523 1.4555473 0.4006348 0.0622559 1.5760193 0.3618164 0.3378906 -0.2399292 -0.1662598 0.1330566 1.1170845 -0.3742676 -0.5620117 -1.9752884 -0.1832275 -0.8164063 -1.9518890 -0.5281982 0.0134277 -1.9328041 -0.1279297 -0.2280273 -1.7242012 -0.0111084 -0.1643066 -1.8669243 0.3782959 0.3339844 0.1691017 0.3551025 0.1049805 0.6792030 0.0065918 -0.0158691 -0.8161621 0.1246338 -0.0727539 -0.4582367 0.1149902 0.7370605 0.6225204 0.3342285 0.6552734 1.3298111 0.1644287 0.6552734 1.4439430 0.2470703 0.6501465 1.9419975 -0.4822998 0.7053223 -1.9567719 -0.0594482 0.1523438 1.6982002 -0.0833740 0.3151855 1.9556923 0.1904297 0.2250977 -1.6798134 0.3614502 0.3552246 -1.9759216 0.4111328 0.5729980 0.7403259 -0.6218262 0.3679199 -1.9297638 0.3500977 0.0332031 -2.0256310 -0.1058350 0.4958496 1.5925026 0.1339111 0.0947266 2.0670357 0.0860596 -0.2316895 -2.0135231 0.6004639 0.4895020 1.6199570 0.6219482 0.2883301 -2.0560646 } } phBound { Type BoundBVH AABBMin 1383.1300049 2792.9521484 49.8171349 AABBMax 1387.1826172 2796.5449219 71.1887512 Radius 11.0236 Centroid 1385.1562500 2794.7485352 60.5029449 CG 1384.9345703 2794.9501953 59.1270485 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 2 { Capsule 0 { MaterialIndex 1 CenterTop 2 CenterBottom 3 Radius 1.02925 } Capsule 1 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.734323 } } ComputePolyNeighbors True Vertices 4 { 1385.1984863 2795.1008301 57.9429321 1384.1469727 2795.5319824 70.3907013 1385.6320801 2795.0192871 57.2009506 1384.9262695 2794.4777832 50.9817581 } } phBound { Type BoundBVH AABBMin 1383.0512695 2793.0080566 50.4139252 AABBMax 1386.6328125 2796.1013184 59.2685890 Radius 5.01998 Centroid 1384.8420410 2794.5546875 54.8412552 CG 1048.9178467 2116.5061035 36.3875465 Margin 0.005 GeometryCenter 1384.8420410 2794.5546875 54.8412552 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 115 { Tri 0 { Vertices 39 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 56 64 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 64 56 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 24 57 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 57 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 12 24 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 23 24 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 23 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 13 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 14 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 13 1 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 9 39 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 39 9 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 56 39 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 39 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 12 56 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 66 2 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 2 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 55 2 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 2 55 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 65 8 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 55 66 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 65 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 54 55 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 8 7 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 44 38 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 36 37 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 38 49 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 51 36 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 36 51 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 48 6 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 9 51 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 10 7 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 35 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 43 35 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 38 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 38 43 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 48 49 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 48 43 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 6 48 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 46 42 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 50 14 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 0 61 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 1 20 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 20 1 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 19 50 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 60 20 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 60 47 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 34 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 45 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 34 20 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 45 34 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 46 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 45 46 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 18 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 54 67 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 0 55 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 0 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 0 68 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 49 5 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 49 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 46 18 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 40 42 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 47 60 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 16 18 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 60 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 68 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 7 27 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 54 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 7 10 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 10 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 5 25 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 6 42 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 40 3 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 58 54 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 27 7 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 15 18 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 58 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 25 26 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 67 58 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 18 15 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 41 40 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 26 28 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 26 25 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 52 28 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 5 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 22 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 3 41 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 3 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 30 58 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 67 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 67 29 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 16 68 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 29 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 17 16 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 17 41 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 52 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 32 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 31 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 31 32 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 31 28 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 53 63 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 52 53 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 62 29 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 62 31 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 62 69 29 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 70 { -0.3770752 0.5505371 -3.6814117 -0.5528564 0.6469727 -3.7516136 -1.1044922 0.2646484 -3.7598724 1.3364258 -0.1394043 0.3821144 0.9122314 0.2526855 3.5233955 1.0225830 -0.3806152 0.1011734 0.9838867 -0.5410156 -3.1038361 -0.1673584 -0.4829102 -1.8311386 -0.5819092 -0.3620605 -2.5972900 -0.4752197 -0.8986816 -3.3195343 -0.0109863 -0.8603516 -2.8407898 -1.4127197 0.4748535 -4.2420540 -1.3680420 0.1958008 -4.1572647 -0.8779297 0.6374512 -4.1673126 -0.5510254 0.8322754 -4.2816963 1.0898438 0.8857422 0.9916229 0.8883057 0.8544922 0.0747452 0.9183350 1.1721191 3.6306229 1.3869629 0.3386230 -0.6015244 0.6180420 0.7634277 -4.3048210 0.5063477 0.5751953 -4.2430191 0.5969238 0.5078125 -4.4273300 0.5200195 0.0361328 3.5685463 -1.7670898 -0.1296387 -4.1951180 -1.5700684 -0.3393555 -4.1827278 0.7178955 -0.2727051 1.2775192 0.4238281 -0.1708984 1.3595581 0.0473633 -0.0634766 0.1103973 0.0413818 0.1914063 3.0804405 0.1599121 1.2099609 3.2233200 0.1044922 0.8466797 2.1637001 -0.0585938 0.8713379 3.3437653 -0.1149902 0.6972656 3.1846428 1.7907715 -0.0441895 -4.2552681 0.9846191 0.3691406 -4.2918854 1.7755127 -0.4062500 -4.1958046 0.0651855 -1.2570801 -3.9911194 0.0777588 -1.5466309 -4.1476288 1.2198486 -0.7766113 -4.0902290 -1.4243164 -1.0588379 -4.1443253 1.4329834 0.0520020 0.3687630 1.2263184 0.6770020 3.1728058 1.1044922 -0.3215332 -3.0995712 1.5056152 -0.4514160 -4.1161079 1.1282959 -1.1894531 -4.1269798 1.4388428 -0.1645508 -4.1561623 1.1367188 -0.1369629 -3.6019897 0.9621582 0.1123047 -3.9227104 1.2060547 -0.4582520 -3.8032303 1.0438232 -0.6955566 -3.8197479 -0.0900879 0.8020020 -4.3401985 0.1041260 -0.9345703 -3.3744545 0.2268066 0.0444336 3.6387444 0.1186523 0.1289063 3.7718506 -0.3406982 -0.2390137 -1.8607330 -0.5723877 0.1967773 -2.9195251 -1.4840088 -0.3886719 -4.0135574 -1.7907715 -0.4204102 -4.1864471 0.1306152 0.2182617 1.1795120 0.3228760 1.3295898 3.4977913 0.4765625 0.5002441 -3.5503693 0.0836182 0.6291504 -3.6636543 -0.0456543 1.3457031 4.2193451 -0.1319580 0.8698730 3.6503067 -1.7634277 -0.7690430 -4.1702042 -0.8836670 -0.5395508 -3.3032913 -1.3542480 -0.3867188 -3.7605591 0.1269531 0.5153809 -0.0717125 0.4453125 0.8322754 0.0816269 0.1395264 1.5466309 4.4273338 } } phBound { Type BoundBVH AABBMin 1373.7390137 2818.7529297 45.6911087 AABBMax 1377.5567627 2824.5231934 54.7433586 Radius 5.69681 Centroid 1375.6479492 2821.6381836 50.2172318 CG 1374.9698486 2822.3479004 50.7315140 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 7 { Capsule 0 { MaterialIndex 1 CenterTop 12 CenterBottom 13 Radius 0.46257 } Capsule 1 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.361207 } Capsule 2 { MaterialIndex 0 CenterTop 8 CenterBottom 9 Radius 0.386692 } Capsule 3 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.451283 } Capsule 4 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.350845 } Capsule 5 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.420982 } Capsule 6 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.374447 } } ComputePolyNeighbors True Vertices 14 { 1374.6722412 2823.9692383 54.3221855 1374.3653564 2823.7319336 51.4482384 1374.9299316 2820.7124023 51.0564651 1374.5725098 2819.4013672 54.0547562 1377.0473633 2823.1840820 53.1856384 1376.0905762 2823.2690430 51.5522919 1375.6359863 2823.2617188 51.1377411 1374.6044922 2822.4804688 49.1222153 1374.2551270 2823.5849609 50.8387718 1374.5544434 2822.5263672 48.9638405 1374.6113281 2822.2421875 49.0965118 1374.8481445 2821.2138672 50.5820389 1374.5303955 2822.4111328 48.6680679 1374.7835693 2822.7011719 46.2199249 } } phBound { Type BoundBVH AABBMin 1374.0975342 2821.8015137 45.8563728 AABBMax 1375.5502930 2823.5107422 49.2442017 Radius 2.03159 Centroid 1374.8239746 2822.6562500 47.5502853 CG 1028.4899902 2111.3842773 35.5863075 Margin 0.005 GeometryCenter 1374.8239746 2822.6562500 47.5502853 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 93 { Tri 0 { Vertices 38 39 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 38 29 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 11 39 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 11 9 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 31 32 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 5 12 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 39 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 4 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 12 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 6 39 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 29 30 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 30 29 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 52 57 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 44 57 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 46 57 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 44 50 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 6 30 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 53 30 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 57 46 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 58 53 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 32 31 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 37 14 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 32 14 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 25 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 7 8 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 47 7 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 47 0 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 8 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 13 0 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 2 48 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 0 13 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 22 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 46 22 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 22 45 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 55 45 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 47 48 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 49 23 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 50 51 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 55 50 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 2 23 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 2 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 22 55 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 20 15 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 37 31 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 10 20 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 31 9 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 33 3 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 30 53 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 9 4 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 22 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 14 37 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 25 23 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 27 26 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 3 33 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 4 26 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 54 53 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 2 1 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 42 25 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 15 17 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 1 13 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 17 42 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 58 24 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 36 54 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 35 36 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 33 53 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 53 54 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 34 27 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 20 10 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 21 28 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 26 27 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 10 26 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 40 41 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 56 21 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 41 56 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 40 27 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 27 34 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 24 25 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 25 42 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 18 17 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 15 20 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 28 18 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 17 35 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 35 17 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 17 16 19 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 59 { -0.1418457 0.6220703 -1.3567619 -0.1462402 0.4497070 -1.0224037 -0.0192871 0.4951172 -1.0024261 -0.0977783 -0.4941406 -0.5884285 -0.4345703 -0.3801270 -0.7002373 -0.1370850 -0.3679199 -0.9945335 0.0318604 -0.4226074 -1.4009056 -0.3437500 0.6835938 -1.6165276 -0.4899902 0.4614258 -1.6141090 -0.4400635 -0.2502441 -1.2767982 -0.6215820 -0.4831543 0.8343391 -0.4895020 -0.4082031 -1.6778564 -0.3345947 -0.3203125 -1.2771759 -0.3333740 0.3254395 -1.2479057 -0.4870605 0.2211914 -1.5064888 -0.5192871 0.0749512 0.3380127 -0.4483643 0.2060547 1.4269028 -0.2436523 0.1115723 1.0850792 -0.4251709 0.0371094 1.0604858 -0.1304932 0.1267090 1.5110550 -0.6621094 -0.2792969 0.3423615 -0.6569824 -0.4133301 1.1829834 0.3868408 0.1340332 -1.0073128 0.3033447 0.4909668 -1.3209419 0.1976318 0.1467285 -0.2776985 -0.0141602 0.2990723 -0.2136841 -0.4006348 -0.5456543 0.3612099 -0.2115479 -0.7714844 1.2504311 -0.5893555 -0.1733398 1.1691818 0.0878906 -0.5153809 -1.6708183 0.1757813 -0.4233398 -1.3659439 -0.5068359 -0.1264648 -1.2653046 -0.6417236 -0.1997070 -1.6557846 -0.0234375 -0.5278320 -0.0571938 0.1575928 -0.5595703 1.3295937 0.0772705 -0.0610352 1.0720291 0.1401367 -0.1611328 1.0322914 -0.5106201 0.0361328 -1.2579498 -0.2341309 -0.4904785 -1.6939125 -0.0760498 -0.3601074 -1.4359207 -0.4716797 -0.7026367 1.2338943 -0.6212158 -0.7763672 1.6939163 -0.1949463 0.1396484 0.7629128 -0.2033691 -0.8547363 1.4574051 0.7242432 -0.2368164 -1.5550346 0.4829102 -0.0104980 -1.1697655 0.4631348 -0.1547852 -1.1921082 0.0317383 0.8544922 -1.5673332 0.0198975 0.7368164 -1.4487038 0.4815674 0.5920410 -1.5621223 0.7263184 0.1745605 -1.5563774 0.6877441 0.4086914 -1.5449409 0.4274902 -0.4167480 -1.6179771 0.2237549 -0.3481445 -0.4533615 0.1699219 -0.4020996 0.9799843 0.5325928 0.1618652 -1.2895241 -0.7264404 -0.5527344 1.4850655 0.4587402 -0.2841797 -1.3530579 0.2666016 -0.0986328 -0.3692627 } } phBound { Type BoundBVH AABBMin 1342.6269531 2764.4777832 46.2534103 AABBMax 1345.3110352 2767.0700684 80.7245941 Radius 17.3363 Centroid 1343.9689941 2765.7739258 63.4890022 CG 1343.9530029 2765.8691406 63.4922638 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.1155 } } ComputePolyNeighbors True Vertices 2 { 1343.9173584 2765.7827148 79.6054764 1344.0206299 2765.7651367 47.3725281 } } phBound { Type BoundBVH AABBMin 1342.5786133 2764.4865723 47.9452171 AABBMax 1346.6735840 2767.4685059 54.7904282 Radius 4.25786 Centroid 1344.6260986 2765.9775391 51.3678207 CG 1034.3750000 2127.7082520 41.6210213 Margin 0.005 GeometryCenter 1344.6260986 2765.9775391 51.3678207 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 61 51 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 51 57 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 4 51 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 51 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 3 50 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 0 4 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 0 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 0 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 45 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 30 45 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 3 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 61 50 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 18 17 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 45 39 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 38 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 38 52 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 38 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 38 40 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 38 18 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 39 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 39 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 6 57 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 33 6 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 25 23 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 57 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 57 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 5 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 5 6 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 33 47 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 5 7 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 0 2 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 7 5 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 47 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 40 60 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 60 40 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 40 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 40 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 39 34 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 34 36 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 39 30 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 58 34 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 23 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 22 60 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 32 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 32 33 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 33 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 41 34 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 36 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 7 26 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 27 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 29 30 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 29 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 26 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 26 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 28 26 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 29 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 28 15 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 55 29 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 55 53 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 31 29 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 58 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 58 31 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 58 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 36 37 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 54 46 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 46 47 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 26 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 46 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 46 54 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 37 35 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 35 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 31 49 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 42 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 43 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 43 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 53 55 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 9 8 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 56 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 55 56 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 56 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 56 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 49 21 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 21 44 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 12 11 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 42 11 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 49 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 44 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 48 19 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 48 49 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 53 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 49 53 8 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.1729736 -1.1772461 -1.3470306 -0.7301025 -1.4814453 -2.6879501 -0.3376465 -1.4814453 -1.5442467 -1.4279785 -0.7670898 -2.0859642 -1.0693359 -1.3430176 -2.6621513 0.2810059 -1.1574707 -1.5729713 0.1523438 -1.1040039 -3.0677605 -0.4519043 -1.3625488 -0.8064613 -0.3854980 0.5744629 3.0657806 -1.1029053 0.2583008 2.0895195 -0.7633057 0.5344238 3.4226074 0.0902100 -1.0876465 1.2526054 -0.5732422 -1.2150879 1.7742653 -0.7757568 -0.9335938 3.1760864 -1.1109619 -0.5493164 2.9659195 -1.3547363 -0.5385742 1.8183479 -1.9536133 0.5783691 -3.4226036 -2.0474854 0.0590820 -3.3669281 -1.5195313 0.0295410 -2.9284134 0.4907227 -0.0139160 2.8796349 0.5322266 -0.4670410 3.0749741 0.4456787 -0.4333496 1.9632301 1.6796875 0.4565430 -3.3470802 0.8126221 -0.1735840 -2.9708252 2.0474854 0.2502441 -3.2881660 0.5187988 -0.9111328 -3.3700600 -1.0379639 -1.2587891 -0.2828178 -1.2598877 -0.9499512 -0.2740402 -1.2780762 -0.7539063 0.4589386 -1.2976074 -0.1760254 -0.3166618 -1.1311035 -0.0048828 -1.2938614 -0.6343994 0.5346680 0.1497421 0.6121826 0.1928711 -2.8731537 0.5416260 -0.3242188 -2.0064697 -0.1931152 0.4289551 -1.0614433 0.3233643 0.4003906 -0.3087234 0.3452148 0.0092773 -1.0530853 0.5980225 -0.3010254 -0.5311127 -0.9882813 0.6499023 -3.0331841 -1.0042725 0.4243164 -2.4683800 -0.5474854 0.5429688 -2.7011147 -0.1722412 0.4550781 -2.5242653 -0.0163574 -1.1892090 2.6364594 -1.0018311 -1.1044922 1.7467957 0.2139893 -0.9030762 2.2055740 -1.4195557 -0.5065918 -1.7929611 0.4669189 -0.7739258 -0.4940300 0.5245361 -0.6699219 -1.3152733 0.1608887 0.3469238 3.0834351 0.1053467 0.4121094 1.9549789 -1.6367188 -0.3686523 -3.0497932 -1.4454346 -1.3144531 -3.3413353 -0.8359375 1.0693359 -3.3146973 -0.5684814 0.4753418 0.9567833 0.4443359 -0.0541992 0.2066727 -1.2818604 -0.1401367 1.7407341 -1.1895752 -0.0415039 3.2592354 -0.5076904 -1.4909668 -3.3203392 -0.3316650 0.5466309 -0.5502281 -1.4024658 1.4909668 -3.3716278 0.5826416 0.5727539 -3.2807503 -1.6987305 -0.6955566 -3.3662987 } } phBound { Type BoundBVH AABBMin 1327.2379150 2704.9045410 33.7018776 AABBMax 1331.1243896 2707.1076660 71.0600128 Radius 18.8122 Centroid 1329.1811523 2706.0061035 52.3809433 CG 1329.0932617 2705.9345703 52.3777466 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.01961 } } ComputePolyNeighbors True Vertices 2 { 1330.0142822 2706.0424805 69.9933167 1328.3480225 2705.9697266 34.7685699 } } phBound { Type BoundBVH AABBMin 1327.0738525 2704.8002930 35.3989754 AABBMax 1330.8214111 2707.5495605 42.8779602 Radius 4.40278 Centroid 1328.9476318 2706.1748047 39.1384659 CG 1015.4396362 2067.4506836 31.1151466 Margin 0.005 GeometryCenter 1328.9476318 2706.1748047 39.1384659 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 51 57 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 4 51 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 51 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 61 51 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 61 50 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 17 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 38 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 38 18 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 38 40 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 38 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 38 52 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 39 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 3 50 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 18 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 3 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 45 39 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 0 4 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 0 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 39 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 0 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 45 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 30 45 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 40 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 40 60 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 6 57 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 60 40 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 40 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 33 6 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 25 23 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 32 33 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 22 60 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 32 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 23 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 57 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 57 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 5 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 5 6 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 5 7 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 0 2 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 7 5 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 47 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 39 30 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 39 34 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 58 34 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 41 34 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 34 36 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 33 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 33 47 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 36 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 29 30 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 27 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 29 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 26 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 58 31 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 58 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 36 37 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 37 35 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 46 47 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 26 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 26 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 28 26 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 29 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 28 15 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 55 29 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 55 53 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 31 29 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 26 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 46 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 46 54 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 54 46 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 35 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 31 49 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 12 11 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 42 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 42 11 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 43 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 53 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 49 21 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 53 55 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 21 44 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 9 8 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 49 53 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 49 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 43 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 56 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 56 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 55 56 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 56 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 48 49 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 48 19 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 44 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -0.9995117 -1.0659180 -1.4550743 -0.6771240 -1.3583984 -2.9346275 -0.2564697 -1.3674316 -1.6979713 -1.2612305 -0.6853027 -2.2548866 -0.9814453 -1.2224121 -2.8952179 0.3156738 -1.0888672 -1.7508240 0.1181641 -1.0388184 -3.3799744 -0.3171387 -1.2543945 -0.8881645 0.0089111 0.5197754 3.3368874 -0.7080078 0.2495117 2.2947578 -0.3176270 0.4943848 3.7394943 0.2978516 -1.0148926 1.3430519 -0.2829590 -1.1120605 1.9355850 -0.3834229 -0.8469238 3.4736176 -0.6900635 -0.4868164 3.2543907 -0.9749756 -0.4721680 2.0085449 -1.7766113 0.5563965 -3.7005386 -1.8737793 0.0847168 -3.6355095 -1.3686523 0.0437012 -3.1739616 0.7822266 -0.0424805 3.1052551 0.8179932 -0.4572754 3.3182755 0.6791992 -0.4260254 2.1062088 1.5405273 0.3437500 -3.7394905 0.7520752 -0.2072754 -3.2979355 1.8737793 0.1450195 -3.6870956 0.4415283 -0.8735352 -3.7229462 -0.8205566 -1.1425781 -0.2966652 -1.0140381 -0.8540039 -0.2802353 -0.9852295 -0.6730957 0.5209503 -1.0292969 -0.1459961 -0.3271141 -0.9257813 0.0039063 -1.4008446 -0.3786621 0.4853516 0.1589050 0.5847168 0.1335449 -3.1853333 0.5531006 -0.3356934 -2.2347794 -0.0449219 0.3745117 -1.1792030 0.4667969 0.3354492 -0.3738785 0.4351807 -0.0239258 -1.1871338 0.6859131 -0.3134766 -0.6247025 -0.8721924 0.5954590 -3.3074722 -0.8623047 0.3908691 -2.6893158 -0.4547119 0.4860840 -2.9592133 -0.1049805 0.3955078 -2.7783623 0.2731934 -1.1025391 2.8590240 -0.6726074 -0.9990234 1.9196129 0.4678955 -0.8483887 2.3798981 -1.2303467 -0.4470215 -1.9354668 0.5549316 -0.7419434 -0.5788574 0.5656738 -0.6496582 -1.4782867 0.5021973 0.2966309 3.3382683 0.3917236 0.3559570 2.1068993 -1.4934082 -0.3171387 -3.3018417 -1.3610840 -1.1870117 -3.6249390 -0.7368164 0.9738770 -3.6211472 -0.2760010 0.4309082 1.0386848 0.5927734 -0.0825195 0.1861382 -0.9014893 -0.1101074 1.9204178 -0.7315674 -0.0200195 3.5764542 -0.5089111 -1.3745117 -3.6329803 -0.1402588 0.4870605 -0.6161995 -1.2452393 1.3747559 -3.6651535 0.5460205 0.4807129 -3.6305656 -1.5764160 -0.6145020 -3.6449280 } } phBound { Type BoundBVH AABBMin 1282.2373047 2840.6274414 45.4683228 AABBMax 1288.3969727 2847.6169434 55.9962769 Radius 7.02909 Centroid 1285.3171387 2844.1220703 50.7322998 CG 1284.5275879 2844.7727051 51.1921844 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 7 { Capsule 0 { MaterialIndex 1 CenterTop 12 CenterBottom 13 Radius 0.595692 } Capsule 1 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.497977 } Capsule 2 { MaterialIndex 0 CenterTop 8 CenterBottom 9 Radius 0.465158 } Capsule 3 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.581157 } Capsule 4 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.451814 } Capsule 5 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.482208 } Capsule 6 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.542136 } } ComputePolyNeighbors True Vertices 14 { 1283.7062988 2842.6523438 51.7483978 1283.0529785 2841.5014648 55.2989349 1285.3287354 2846.9340820 55.1063576 1284.4852295 2846.5600586 51.9122276 1287.6555176 2844.7780762 53.7250977 1286.3437500 2845.1979980 51.9465103 1285.7446289 2845.3708496 51.5144157 1283.8920898 2844.7600098 49.4024849 1283.7866211 2844.4702148 49.3983765 1283.7812500 2843.2514648 51.1660614 1284.2076416 2846.3859863 51.2486916 1283.8336182 2844.8254395 49.2226982 1283.7135010 2844.6750488 48.9032516 1283.8382568 2844.7004395 46.0903397 } } phBound { Type BoundBVH AABBMin 1282.9645996 2843.9030762 45.7227440 AABBMax 1284.8493652 2845.6135254 49.6350746 Radius 2.33368 Centroid 1283.9069824 2844.7583008 47.6789093 CG 955.9973755 2118.6743164 38.0661507 Margin 0.005 GeometryCenter 1283.9069824 2844.7583008 47.6789093 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 93 { Tri 0 { Vertices 38 39 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 38 29 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 6 39 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 29 30 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 30 29 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 11 39 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 5 12 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 39 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 6 30 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 12 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 4 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 11 9 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 31 32 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 32 31 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 32 14 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 37 14 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 8 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 13 0 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 7 8 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 0 13 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 47 7 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 44 57 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 52 57 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 44 50 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 55 45 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 46 57 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 22 45 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 22 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 53 30 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 57 46 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 58 53 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 46 22 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 47 48 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 47 0 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 49 23 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 50 51 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 55 50 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 2 23 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 2 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 2 48 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 22 55 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 25 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 25 23 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 10 20 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 31 9 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 9 4 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 37 31 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 33 3 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 30 53 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 58 22 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 20 15 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 14 37 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 2 1 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 27 26 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 26 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 54 53 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 4 26 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 58 24 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 36 54 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 35 36 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 24 25 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 15 17 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 42 25 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 17 42 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 1 13 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 3 33 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 33 53 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 53 54 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 34 27 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 20 10 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 26 27 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 10 26 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 40 41 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 56 21 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 41 56 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 40 27 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 27 34 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 25 42 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 18 17 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 15 20 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 28 18 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 21 28 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 17 16 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 17 35 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 35 17 19 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 59 { 0.0747070 0.6767578 -1.6719856 0.0321045 0.5004883 -1.2760429 0.2072754 0.4963379 -1.2681007 -0.2933350 -0.6147461 -0.6894684 -0.6568604 -0.3281250 -0.8019485 -0.3333740 -0.4785156 -1.1581879 -0.2088623 -0.6572266 -1.6238670 -0.1710205 0.8247070 -1.9561653 -0.4487305 0.6286621 -1.9186134 -0.6766357 -0.2177734 -1.4659538 -0.7321777 -0.2363281 0.9550209 -0.8602295 -0.4157715 -1.8978958 -0.5832520 -0.3513184 -1.4670296 -0.2779541 0.4221191 -1.5028496 -0.5428467 0.3491211 -1.7717476 -0.4139404 0.3413086 0.3276749 -0.1293945 0.5534668 1.5369377 0.0275879 0.3159180 1.1455917 -0.2269287 0.3105469 1.1396790 0.2241211 0.3154297 1.6159248 -0.7486572 -0.0141602 0.3812256 -0.6975098 -0.1076660 1.3437424 0.5239258 -0.1279297 -1.2662506 0.5500488 0.3125000 -1.6518669 0.3969727 0.0366211 -0.4298248 0.2230225 0.3244629 -0.3575859 -0.5577393 -0.4545898 0.4108391 -0.3232422 -0.7409668 1.4237442 -0.5068359 0.1459961 1.2973518 -0.2196045 -0.8168945 -1.9228516 -0.0329590 -0.7233887 -1.5953865 -0.6973877 -0.0371094 -1.4610558 -0.9423828 -0.0930176 -1.8835106 -0.1523438 -0.6464844 -0.0921516 0.2263184 -0.6560059 1.4621315 0.3291016 -0.0434570 1.1245766 0.3525391 -0.1960449 1.0855904 -0.6254883 0.1594238 -1.4697762 -0.5955811 -0.6364746 -1.9268532 -0.3131104 -0.5344238 -1.6617775 -0.6041260 -0.5371094 1.4177132 -0.7580566 -0.5163574 1.9561653 0.0576172 0.2998047 0.7752609 -0.3258057 -0.8271484 1.6655350 0.6846924 -0.7756348 -1.8707352 0.5509033 -0.3596191 -1.4415970 0.4572754 -0.5244141 -1.4499550 0.3632813 0.8552246 -1.9476891 0.3094482 0.7297363 -1.8004036 0.7791748 0.3291016 -1.9484062 0.8781738 -0.2851563 -1.9162865 0.9423828 0.0136719 -1.9253616 0.2386475 -0.8552246 -1.8998070 0.1759033 -0.5812988 -0.5773506 0.2696533 -0.5024414 1.0498886 0.6749268 -0.1867676 -1.5989113 -0.8066406 -0.2165527 1.7047005 0.3713379 -0.6899414 -1.6174164 0.3536377 -0.2963867 -0.5123329 } } phBound { Type BoundBVH AABBMin 1228.8457031 2846.5156250 46.0318451 AABBMax 1229.6462402 2847.1962891 49.3292999 Radius 1.73042 Centroid 1229.2459717 2846.8559570 47.6805725 CG 1229.2254639 2846.8864746 47.6784477 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.323915 } } ComputePolyNeighbors True Vertices 2 { 1229.2963867 2846.8537598 48.9931793 1229.1955566 2846.8581543 46.3679657 } } phBound { Type BoundBVH AABBMin 1225.5097656 2842.9228516 48.7044449 AABBMax 1233.1870117 2850.1418457 54.5374832 Radius 6.02242 Centroid 1229.3483887 2846.5322266 51.6209641 CG 1229.5213623 2846.9567871 50.7626495 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 3 { Capsule 0 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.985784 } Capsule 1 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 1.54571 } Capsule 2 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.27357 } } ComputePolyNeighbors True Vertices 6 { 1232.7546387 2849.7226563 50.3609161 1230.3181152 2847.9267578 49.5416107 1229.4071045 2846.8566895 52.9335327 1229.3062744 2846.8610840 50.3083954 1227.6972656 2845.8950195 50.2345047 1227.0134277 2844.5854492 51.1740189 } } phBound { Type BoundBVH AABBMin 1228.4897461 2845.9379883 46.0716667 AABBMax 1229.9674072 2847.6284180 48.8994980 Radius 1.80539 Centroid 1229.2285156 2846.7832031 47.4855804 CG 930.1051025 2154.6467285 36.1793709 Margin 0.005 GeometryCenter 1229.2285156 2846.7832031 47.4855804 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 121 { Tri 0 { Vertices 32 31 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 60 31 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 60 61 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 32 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 16 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 32 18 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 18 17 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 16 12 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 12 14 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 59 18 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 58 18 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 15 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 19 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 14 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 12 13 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 20 21 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 21 20 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 22 62 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 62 14 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 20 19 75 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 20 75 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 26 22 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 26 27 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 55 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 66 62 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 22 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 22 28 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 67 70 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 34 70 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 70 34 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 34 33 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 30 33 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 33 34 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 63 68 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 68 63 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 67 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 5 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 25 67 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 25 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 6 5 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 4 69 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 29 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 27 56 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 55 56 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 28 40 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 37 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 28 37 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 37 39 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 37 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 51 23 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 51 50 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 25 50 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 38 40 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 72 50 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 38 71 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 25 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 50 69 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 30 58 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 57 33 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 18 58 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 35 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 64 59 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 62 64 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 39 64 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 62 66 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 63 33 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 6 63 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 4 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 4 7 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 65 38 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 69 7 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 39 38 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 38 65 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 63 57 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 57 58 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 35 8 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 59 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 64 36 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 39 73 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 39 54 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 73 39 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 63 8 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 11 46 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 48 6 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 7 6 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 48 41 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 54 65 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 7 41 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 43 54 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 3 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 3 8 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 49 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 8 3 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 3 36 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 49 9 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 52 9 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 64 73 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 0 36 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 43 42 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 0 73 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 42 74 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 36 0 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 8 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 11 10 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 41 42 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 46 47 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 10 49 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 47 46 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 48 47 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 48 45 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 47 49 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 117 { Vertices 47 52 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 118 { Vertices 53 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 119 { Vertices 44 41 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 120 { Vertices 41 44 42 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 76 { 0.3457031 -0.1774902 0.9224548 0.2519531 -0.2678223 1.2087708 0.2819824 -0.3298340 1.1323051 -0.2071533 -0.2778320 1.1420135 -0.0502930 0.5454102 -0.8065834 -0.3350830 0.3608398 -1.0615730 -0.1459961 0.4455566 -0.4791832 0.1711426 0.4665527 -0.0596123 -0.2229004 -0.1130371 0.6959038 -0.2561035 -0.1440430 0.9286232 -0.3182373 0.1474609 0.7082024 -0.2626953 0.3725586 -0.0077438 -0.1337891 -0.3818359 -0.9203758 -0.0888672 -0.3557129 -1.4079590 0.0670166 -0.3388672 -0.9388466 0.0589600 -0.3752441 -1.4086037 -0.2440186 -0.7858887 -1.3945808 -0.4287109 -0.6914063 -1.3958321 -0.3171387 -0.3054199 -0.9607239 0.1953125 -0.7011719 -1.3963051 0.2624512 -0.4453125 -1.0712814 0.1815186 -0.3427734 -0.8843002 0.3718262 -0.2656250 -1.0267487 0.1951904 0.7912598 -1.3906517 -0.0557861 0.8452148 -1.3957024 -0.0378418 0.6926270 -1.1814079 0.5002441 -0.3598633 -1.3861237 0.5312500 -0.1574707 -1.2019882 0.2731934 -0.0041504 -1.4100304 0.3231201 -0.0974121 -1.4139137 -0.3619385 -0.1640625 -0.9173126 -0.4992676 -0.1816406 -1.1087799 -0.3789063 -0.2314453 -1.4029083 -0.3630371 -0.0378418 -0.7439270 -0.4270020 0.0009766 -1.0858231 -0.1530762 -0.2436523 0.1825600 0.0441895 -0.2644043 0.9441605 0.2404785 0.2170410 -1.0333061 0.3168945 0.2900391 -0.9029427 0.2741699 0.0024414 -0.4761658 0.3372803 0.2375488 -1.4068336 0.2177734 0.4548340 0.7025490 0.3416748 0.2541504 0.9622383 0.3720703 0.1401367 0.2212257 0.2840576 0.4111328 1.1801186 0.1037598 0.5620117 1.3718872 -0.2200928 0.4240723 0.7031097 -0.2679443 0.4165039 0.9647865 -0.0676270 0.4916992 0.4444504 -0.4017334 0.2431641 0.8925934 0.2071533 0.5080566 -1.0854340 0.1955566 0.6359863 -1.3977737 -0.3487549 0.3586426 1.4139175 -0.1892090 0.4514160 1.4067955 0.3474121 0.2504883 -0.0146065 0.7388916 -0.0549316 -1.3819809 0.6999512 0.0371094 -1.3810310 -0.3098145 -0.0390625 -0.2451706 -0.2548828 -0.1557617 -0.4729271 -0.0274658 -0.3205566 -0.5194016 -0.7387695 -0.2592773 -1.3931122 -0.6331787 -0.3486328 -1.3976021 0.2735596 -0.2209473 -0.6897278 -0.3719482 0.1530762 -0.4796181 0.1024170 -0.2866211 -0.0341530 0.3209229 0.4772949 -0.1986923 0.2484131 -0.0722656 -0.6983566 -0.5062256 0.3696289 -1.4003181 -0.4616699 0.2158203 -1.1187935 0.1557617 0.4880371 -0.3917160 -0.5744629 -0.0134277 -1.4007492 0.6367188 0.4006348 -1.3981628 0.3712158 0.4841309 -1.4051971 0.2917480 -0.1032715 0.2040062 0.4295654 0.0944824 1.2161064 0.5208740 -0.8452148 -1.3846970 } } phBound { Type BoundBVH AABBMin 1194.5313721 2863.6669922 36.8237076 AABBMax 1196.5325928 2868.0952148 71.8622208 Radius 17.6869 Centroid 1195.5319824 2865.8811035 54.3429642 CG 1195.5605469 2866.1372070 54.3449593 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.866962 } } ComputePolyNeighbors True Vertices 2 { 1195.4547119 2867.1137695 70.9332886 1195.6092529 2864.6484375 37.7526398 } } phBound { Type BoundBVH AABBMin 1194.4937744 2863.7062988 38.2970963 AABBMax 1197.6793213 2866.0344238 45.3498840 Radius 4.04072 Centroid 1196.0865479 2864.8703613 41.8234901 CG 905.1914673 2168.5913086 31.1040268 Margin 0.005 GeometryCenter 1196.0865479 2864.8703613 41.8234901 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 51 57 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 4 51 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 61 51 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 51 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 61 50 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 17 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 38 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 38 18 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 39 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 38 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 38 52 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 38 40 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 40 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 40 60 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 6 57 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 60 40 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 40 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 33 6 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 25 23 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 22 60 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 32 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 23 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 3 50 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 18 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 3 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 45 39 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 0 4 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 0 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 39 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 0 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 45 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 0 2 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 30 45 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 57 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 57 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 5 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 5 6 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 33 47 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 5 7 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 7 5 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 47 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 39 30 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 58 34 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 39 34 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 34 36 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 33 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 41 34 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 36 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 32 33 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 29 30 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 27 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 29 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 26 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 58 31 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 58 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 37 35 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 36 37 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 46 47 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 26 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 26 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 28 26 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 29 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 28 15 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 55 29 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 31 29 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 55 53 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 26 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 46 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 54 46 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 46 54 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 35 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 31 49 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 12 11 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 42 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 42 11 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 21 44 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 53 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 49 21 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 43 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 53 55 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 9 8 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 49 53 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 49 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 48 49 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 43 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 56 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 56 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 55 56 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 56 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 48 19 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 44 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -0.9475098 -0.7553711 -1.2964516 -0.6076660 -1.1035156 -2.6597061 -0.3054199 -1.0258789 -1.4810753 -1.1340332 -0.4877930 -2.0791283 -0.8679199 -0.9863281 -2.6413612 0.1829834 -0.7915039 -1.5254707 0.0877686 -0.8605957 -3.0674896 -0.3930664 -0.8750000 -0.7280312 -0.3043213 0.9187012 3.1582260 -0.8669434 0.6164551 2.1672592 -0.5996094 0.9235840 3.5263939 0.0299072 -0.5180664 1.3791580 -0.4898682 -0.5617676 1.9206581 -0.6436768 -0.2324219 3.3484955 -0.8944092 0.0573730 3.1112289 -1.0808105 -0.0156250 1.9284744 -1.5073242 0.4658203 -3.5263939 -1.5927734 0.0698242 -3.4424934 -1.1843262 0.0678711 -2.9878197 0.3627930 0.4279785 2.9997597 0.3837891 0.0908203 3.2244339 0.3198242 0.0341797 2.0779343 1.3120117 0.2912598 -3.4307709 0.6226807 -0.1479492 -3.0136528 1.5927734 0.1271973 -3.3583755 0.3778076 -0.7429199 -3.3874626 -0.8470459 -0.7409668 -0.1962929 -1.0120850 -0.4956055 -0.2038918 -1.0231934 -0.2875977 0.5404701 -1.0229492 0.1018066 -0.2879028 -0.8872070 0.1560059 -1.3022041 -0.4919434 0.6721191 0.1575432 0.4754639 0.1481934 -2.9326820 0.4062500 -0.1850586 -2.0138969 -0.1488037 0.4877930 -1.0824089 0.2500000 0.5107422 -0.3044014 0.2593994 0.1506348 -1.0503922 0.4472656 -0.0563965 -0.4961891 -0.7565918 0.5280762 -3.1261024 -0.7757568 0.3964844 -2.5331497 -0.4174805 0.4599609 -2.7774734 -0.1285400 0.3964844 -2.5895882 -0.0585938 -0.4892578 2.8086205 -0.8200684 -0.4680176 1.8851662 0.1281738 -0.3056641 2.3510170 -1.1220703 -0.2636719 -1.7909584 0.3339844 -0.4167480 -0.4339943 0.3831787 -0.3999023 -1.2845116 0.1146240 0.7309570 3.1898117 0.0756836 0.6970215 2.0245323 -1.2845459 -0.2470703 -3.0925636 -1.1578369 -1.0068359 -3.3432884 -0.6276855 0.8281250 -3.4371758 -0.4439697 0.6860352 0.9915619 0.3320313 0.1948242 0.2500191 -1.0145264 0.2854004 1.8281822 -0.9440918 0.4750977 3.3865929 -0.4335938 -1.1640625 -3.3095322 -0.2547607 0.6213379 -0.5627251 -1.0576172 1.1640625 -3.5194473 0.4625244 0.4123535 -3.3720512 -1.3397217 -0.5231934 -3.4016800 } } phBound { Type BoundBVH AABBMin 1154.3284912 2748.9025879 35.8342781 AABBMax 1156.9211426 2751.3046875 48.5531921 Radius 6.60043 Centroid 1155.6247559 2750.1035156 42.1937332 CG 859.1704102 2045.2781982 32.2994270 Margin 0.005 GeometryCenter 1155.6247559 2750.1035156 42.1937332 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 139 { Tri 0 { Vertices 62 34 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 34 62 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 34 41 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 41 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 28 29 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 31 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 31 50 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 31 49 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 47 72 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 47 48 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 48 47 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 72 48 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 61 48 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 50 48 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 48 50 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 49 73 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 32 33 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 34 33 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 33 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 34 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 29 63 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 28 63 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 28 57 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 57 28 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 50 61 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 70 57 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 57 54 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 61 46 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 35 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 46 33 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 46 35 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 39 32 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 71 70 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 39 63 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 70 56 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 57 56 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 51 39 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 39 10 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 39 51 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 32 39 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 32 52 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 71 35 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 74 69 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 69 70 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 56 70 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 69 55 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 53 10 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 10 39 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 53 54 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 54 56 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 53 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 9 53 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 6 52 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 4 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 6 35 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 74 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 35 6 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 68 3 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 74 3 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 74 68 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 10 8 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 9 8 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 9 55 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 66 9 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 68 67 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 66 69 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 7 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 65 7 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 65 9 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 65 66 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 67 7 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 6 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 51 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 64 51 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 40 21 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 20 21 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 8 21 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 8 7 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 7 3 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 7 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 5 19 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 4 58 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 51 18 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 18 51 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 58 18 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 59 5 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 26 64 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 26 21 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 64 26 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 24 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 24 20 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 5 59 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 19 1 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 5 44 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 1 19 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 26 15 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 18 17 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 18 15 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 60 59 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 60 44 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 15 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 27 0 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 0 27 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 24 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 27 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 27 24 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 15 25 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 38 16 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 45 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 25 0 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 17 45 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 44 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 43 2 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 117 { Vertices 43 44 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 118 { Vertices 43 60 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 119 { Vertices 16 23 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 120 { Vertices 0 2 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 121 { Vertices 12 38 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 122 { Vertices 45 23 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 123 { Vertices 38 12 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 124 { Vertices 22 23 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 125 { Vertices 22 16 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 126 { Vertices 37 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 127 { Vertices 23 37 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 128 { Vertices 43 23 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 129 { Vertices 13 12 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 130 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 131 { Vertices 2 43 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 132 { Vertices 22 12 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 133 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 134 { Vertices 11 13 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 135 { Vertices 12 14 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 136 { Vertices 11 14 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 137 { Vertices 42 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 138 { Vertices 14 36 37 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 75 { -0.3541260 -0.5849609 3.4598389 -0.2498779 -0.4409180 2.2907715 -0.7264404 -0.1738281 4.4443474 -0.9276123 0.1362305 -0.4584656 -1.0081787 -0.2443848 -0.2397308 -0.8079834 -0.2333984 0.5938110 -1.1514893 -0.2297363 -0.4541702 0.0976563 -0.1572266 -0.5459595 0.2717285 -0.4450684 -0.8769913 0.5187988 -0.1147461 -1.0072594 0.3822021 -0.9213867 -1.4669952 -0.7337646 -0.5808105 5.7969933 -0.5330811 -0.6933594 4.7999878 -0.7747803 -0.2841797 5.0505600 -0.8272705 -0.8447266 6.3594589 -0.6779785 -1.0371094 2.6499290 -0.8057861 -1.1489258 4.0771828 -1.0332031 -0.7998047 2.8467941 -0.9483643 -0.8015137 1.7126846 -0.3056641 -0.1501465 0.9572639 0.0551758 -0.3896484 0.7668457 0.0634766 -0.9152832 0.8850021 -0.9785156 -0.9921875 4.7927628 -1.2962646 -0.8374023 4.2943573 0.0069580 -0.8942871 2.1884346 -0.4332275 -0.9794922 2.8122253 -0.4360352 -1.2009277 2.0999641 -0.3944092 -0.7827148 2.8323402 0.8199463 -0.6298828 -5.5993462 0.1910400 -0.7570801 -5.9329185 0.7668457 -1.1005859 -6.2133713 1.2963867 -0.3266602 -6.1477509 -0.5991211 -0.6359863 -3.9588280 -0.5529785 -0.4675293 -4.2322464 -0.2569580 -0.5532227 -5.8214035 -0.5039063 -0.0688477 -1.6626854 -1.2512207 -0.6791992 6.2483330 -1.1744385 -0.9306641 5.7671127 -0.4235840 -0.9216309 3.9400826 0.0811768 -0.7536621 -2.8255005 -0.0770264 -0.9152832 -0.9117546 -0.0988770 -1.1584473 -6.2807503 -1.2662354 -0.4487305 5.7858620 -0.9409180 -0.2333984 4.4597740 -0.5780029 -0.2197266 2.5071640 -1.2427979 -0.7106934 3.8121605 -0.2163086 0.2202148 -5.8124199 -0.3680420 -0.1655273 -6.0295944 0.0640869 0.9616699 -6.1596642 1.1459961 0.5275879 -6.1356392 0.8032227 0.3515625 -5.8448410 -0.5379639 -1.0090332 -0.7213402 -0.5902100 -0.5292969 -1.4033279 0.7337646 -0.3784180 -2.1489830 0.5170898 -0.3249512 -2.9067459 0.6502686 -0.0114746 -1.4298859 0.4052734 0.0283203 -2.6020775 0.8901367 -0.2414551 -4.8189278 -0.8118896 -0.7592773 0.7568855 -1.0246582 -0.4140625 2.1396103 -0.8718262 -0.3098145 2.5587234 0.2220459 0.5869141 -5.7067642 -0.8590088 -0.4277344 -6.3594551 0.3304443 -0.7041016 -4.0389023 -0.3662109 -1.0644531 0.9250412 0.2166748 0.2714844 -0.4297562 0.3148193 0.5087891 -0.8732834 -0.0877686 0.4567871 -0.6615753 -0.1750488 0.3085938 -0.9324570 0.1065674 0.2255859 -1.3273544 0.0921631 0.3088379 -3.5647125 -0.3131104 0.2075195 -1.8904037 -0.4638672 0.9479980 -6.2678604 0.3737793 1.2011719 -6.1920815 -0.6036377 0.1750488 -1.5027351 } } phBound { Type BoundBVH AABBMin 1153.6027832 2747.5681152 35.6802483 AABBMax 1157.2053223 2751.6179199 48.6829720 Radius 7.04361 Centroid 1155.4040527 2749.5930176 42.1816101 CG 1155.4544678 2749.6757813 42.1792068 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.950264 } } ComputePolyNeighbors True Vertices 2 { 1154.9902344 2748.9868164 47.6140289 1155.8178711 2750.1992188 36.7491913 } } phBound { Type BoundBVH AABBMin 1192.5557861 2607.8725586 39.8075562 AABBMax 1197.2686768 2613.0539551 48.4000511 Radius 5.54277 Centroid 1194.9122314 2610.4633789 44.1038055 CG 1194.7130127 2610.7675781 44.6076889 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 7 { Capsule 0 { MaterialIndex 1 CenterTop 12 CenterBottom 13 Radius 0.438217 } Capsule 1 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.366334 } Capsule 2 { MaterialIndex 0 CenterTop 8 CenterBottom 9 Radius 0.342191 } Capsule 3 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.427524 } Capsule 4 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.332374 } Capsule 5 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.398819 } Capsule 6 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.354733 } } ComputePolyNeighbors True Vertices 14 { 1194.8863525 2612.5209961 47.9367943 1194.5994873 2612.2558594 45.2082329 1194.0485840 2609.3820801 44.9919586 1193.2058105 2608.5241699 47.8785248 1196.7277832 2610.9387207 46.9919395 1195.9531250 2611.2536621 45.3990440 1195.5601807 2611.3823242 44.9872856 1194.4251709 2610.9399414 43.0663719 1194.3486328 2610.7268066 43.0526352 1194.1628418 2609.8239746 44.5165939 1194.4652100 2612.1301270 44.6319351 1194.4010010 2610.9885254 42.9119644 1194.3461914 2610.8789063 42.6355476 1194.7270508 2610.9062500 40.3110085 } } phBound { Type BoundBVH AABBMin 1193.8492432 2610.3205566 39.9815559 AABBMax 1195.5000000 2611.5791016 43.1915855 Radius 1.91136 Centroid 1194.6745605 2610.9497070 41.5865707 CG 892.2371216 1950.4316406 31.7945061 Margin 0.005 GeometryCenter 1194.6745605 2610.9497070 41.5865707 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 93 { Tri 0 { Vertices 38 39 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 38 29 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 6 39 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 11 39 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 5 12 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 39 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 4 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 12 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 6 30 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 29 30 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 30 29 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 52 57 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 44 57 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 55 45 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 44 50 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 46 57 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 22 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 53 30 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 57 46 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 58 53 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 11 9 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 31 32 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 32 31 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 32 14 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 37 14 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 8 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 7 8 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 13 0 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 0 13 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 47 7 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 2 48 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 47 48 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 47 0 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 49 23 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 50 51 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 55 50 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 2 23 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 2 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 22 55 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 22 45 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 25 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 25 23 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 9 4 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 10 20 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 31 9 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 37 31 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 20 15 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 14 37 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 33 3 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 30 53 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 46 22 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 58 22 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 3 33 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 27 26 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 54 53 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 4 26 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 2 1 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 42 25 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 15 17 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 1 13 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 17 42 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 58 24 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 36 54 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 35 36 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 20 10 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 21 28 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 26 27 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 15 20 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 34 27 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 33 53 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 53 54 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 17 35 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 25 42 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 24 25 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 28 18 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 18 17 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 27 34 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 40 27 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 40 41 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 10 26 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 41 56 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 56 21 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 17 16 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 35 17 19 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 59 { 0.1657715 0.4973145 -1.3299255 0.0938721 0.3662109 -1.0054398 0.2210693 0.3630371 -0.9831696 -0.2038574 -0.4558105 -0.5505104 -0.4577637 -0.2446289 -0.6756058 -0.1848145 -0.3542480 -0.9429207 -0.0458984 -0.4841309 -1.3189163 0.0156250 0.6069336 -1.5874405 -0.1909180 0.4626465 -1.5815811 -0.4038086 -0.1613770 -1.2284126 -0.6936035 -0.1826172 0.7768135 -0.4932861 -0.3056641 -1.6040039 -0.3354492 -0.2595215 -1.2212944 -0.1091309 0.3093262 -1.2216949 -0.2747803 0.2565918 -1.4688072 -0.3968506 0.2441406 0.2859230 -0.3137207 0.3964844 1.3160362 -0.1586914 0.2229004 1.0044327 -0.3438721 0.2189941 0.9768066 -0.0635986 0.2209473 1.4125481 -0.6466064 -0.0173340 0.2995071 -0.7084961 -0.0891113 1.1030121 0.4521484 -0.0961914 -0.9550400 0.5108643 0.2290039 -1.2716942 0.2733154 0.0224609 -0.2714310 0.1387939 0.2338867 -0.2261772 -0.5102539 -0.3415527 0.3399620 -0.4433594 -0.5554199 1.2011909 -0.5644531 0.0976563 1.0822563 -0.0229492 -0.6008301 -1.5685501 0.0794678 -0.5329590 -1.2797241 -0.4195557 -0.0283203 -1.2257385 -0.5549316 -0.0681152 -1.5985489 -0.1624756 -0.4812012 -0.0419922 -0.0460205 -0.4931641 1.2824516 0.0635986 -0.0415039 1.0130157 0.0848389 -0.1535645 0.9822617 -0.3662109 0.1162109 -1.2259903 -0.2971191 -0.4677734 -1.6050148 -0.1182861 -0.3935547 -1.3593674 -0.6478271 -0.4052734 1.1716461 -0.8156738 -0.3916016 1.6050148 -0.0986328 0.2121582 0.6995926 -0.4700928 -0.6196289 1.4014854 0.6319580 -0.5708008 -1.4443665 0.4898682 -0.2658691 -1.0988731 0.4224854 -0.3869629 -1.1145782 0.4047852 0.6293945 -1.5325432 0.3503418 0.5366211 -1.4153748 0.7087402 0.2421875 -1.4973907 0.7777100 -0.2097168 -1.4635544 0.8254395 0.0102539 -1.4645157 0.3092041 -0.6291504 -1.5086060 0.1271973 -0.4318848 -0.4153633 0.0279541 -0.3786621 0.9444313 0.5966797 -0.1384277 -1.2179604 -0.8253174 -0.1704102 1.3927002 0.3769531 -0.5085449 -1.2617950 0.2502441 -0.2224121 -0.3447113 } } phBound { Type BoundBVH AABBMin 1203.3725586 2737.0185547 35.5441475 AABBMax 1207.1416016 2740.4589844 52.6128387 Radius 8.90762 Centroid 1205.2570801 2738.7387695 44.0784912 CG 821.1251221 1849.5697021 87.5107727 Margin 0.005 GeometryCenter 1205.2570801 2738.7387695 44.0784912 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 139 { Tri 0 { Vertices 62 34 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 34 62 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 34 41 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 41 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 28 29 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 31 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 31 50 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 31 49 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 47 72 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 47 48 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 48 47 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 72 48 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 61 48 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 50 48 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 48 50 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 49 73 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 34 33 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 33 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 34 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 29 63 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 28 63 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 50 61 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 28 57 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 57 28 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 70 57 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 32 33 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 57 54 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 70 56 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 39 32 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 39 63 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 35 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 57 56 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 46 33 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 46 35 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 61 46 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 71 70 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 51 39 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 39 10 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 39 51 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 32 39 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 32 52 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 71 35 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 74 69 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 69 70 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 53 10 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 10 39 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 53 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 53 54 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 9 53 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 54 56 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 56 70 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 69 55 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 6 52 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 4 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 6 35 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 35 6 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 74 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 68 3 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 74 3 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 74 68 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 10 8 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 9 8 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 9 55 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 66 9 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 68 67 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 66 69 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 65 7 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 65 9 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 7 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 65 66 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 67 7 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 6 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 51 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 7 3 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 5 19 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 4 58 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 51 18 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 58 18 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 8 21 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 8 7 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 40 21 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 20 21 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 64 51 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 7 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 18 51 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 24 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 26 64 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 26 21 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 64 26 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 24 20 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 59 5 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 19 1 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 5 59 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 5 44 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 18 17 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 60 59 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 18 15 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 26 15 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 1 19 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 60 44 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 24 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 27 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 27 24 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 15 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 0 27 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 27 0 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 15 25 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 38 16 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 25 0 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 17 45 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 44 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 43 44 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 43 2 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 117 { Vertices 45 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 118 { Vertices 43 60 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 119 { Vertices 0 2 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 120 { Vertices 12 38 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 121 { Vertices 16 23 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 122 { Vertices 45 23 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 123 { Vertices 38 12 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 124 { Vertices 22 23 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 125 { Vertices 22 16 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 126 { Vertices 37 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 127 { Vertices 23 37 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 128 { Vertices 43 23 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 129 { Vertices 13 12 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 130 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 131 { Vertices 2 43 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 132 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 133 { Vertices 22 12 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 134 { Vertices 11 13 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 135 { Vertices 12 14 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 136 { Vertices 11 14 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 137 { Vertices 42 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 138 { Vertices 14 36 37 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 75 { 1.7309570 -0.5434570 4.5761185 1.5467529 -0.3767090 3.0013466 1.5126953 0.1230469 5.9539108 -0.2025146 0.4382324 -0.4756126 -0.2812500 -0.1086426 -0.1502953 0.2546387 -0.0815430 0.8974457 -0.5504150 -0.0827637 -0.3969803 1.2320557 -0.0773926 -0.8424797 1.3652344 -0.5258789 -1.3121758 1.7072754 -0.0629883 -1.5612259 1.3168945 -1.2546387 -2.0990372 1.8723145 -0.4321289 7.7574806 1.8599854 -0.6455078 6.3949394 1.6138916 -0.0161133 6.7707520 1.8845215 -0.7951660 8.5343475 0.9919434 -1.2094727 3.6099014 1.2204590 -1.3181152 5.5305023 0.5537109 -0.8256836 3.9509964 0.3414307 -0.8713379 2.4330330 1.0933838 0.0131836 1.2443275 1.5415039 -0.3740234 0.9100685 1.5509033 -1.1450195 1.0857468 1.1932373 -1.0507813 6.5124969 0.5982666 -0.8139648 5.9302406 1.8554688 -1.0681152 2.8190956 1.3974609 -1.1386719 3.7584877 1.1674805 -1.4875488 2.8288269 1.4733887 -0.8513184 3.7669029 0.7506104 -0.9924316 -7.6756897 -0.2652588 -1.1408691 -7.9486694 0.4592285 -1.7011719 -8.4528198 1.2987061 -0.6013184 -8.5343437 -0.8155518 -0.8369141 -5.1457481 -0.8176270 -0.6015625 -5.5257645 -0.8649902 -0.8017578 -7.6946259 0.0397949 0.0642090 -2.1647835 1.2510986 -0.5219727 8.4901619 1.2020264 -0.9135742 7.8458443 1.7482910 -1.0178223 5.2417412 0.4931641 -1.0273438 -3.8210793 0.8178711 -1.1918945 -1.2487984 -0.8151855 -1.7202148 -8.3165894 1.1093750 -0.1960449 7.8742485 1.2032471 0.0529785 6.0320168 1.1523438 -0.0183105 3.3619041 0.5422363 -0.6469727 5.2751389 -0.7486572 0.3342285 -7.7253952 -1.0593262 -0.2290039 -7.9568253 -0.3931885 1.3925781 -8.2863464 1.1457520 0.6689453 -8.5151482 0.7239990 0.4460449 -8.0359802 0.2015381 -1.2873535 -0.8750916 -0.0411377 -0.5986328 -1.7813454 1.6621094 -0.5046387 -3.1118011 1.1293945 -0.4333496 -4.0580292 1.7797852 0.0651855 -2.1568909 1.0828857 0.1057129 -3.6419830 1.1098633 -0.4013672 -6.6802826 0.2596436 -0.8505859 1.1351891 0.3848877 -0.2810059 3.0000343 0.7366943 -0.1259766 3.5094376 -0.0582275 0.8427734 -7.7140846 -1.8845215 -0.5869141 -8.2547874 0.4989014 -1.0131836 -5.4878960 0.9313965 -1.3298340 1.2553711 1.4687500 0.5480957 -0.7375488 1.4963379 0.8757324 -1.3579369 0.9737549 0.8374023 -0.9726601 0.7570801 0.6176758 -1.3016586 1.0416260 0.4604492 -1.8915405 0.3665771 0.5124512 -4.8430481 0.2679443 0.4489746 -2.5256004 -1.1887207 1.4106445 -8.2926598 0.0615234 1.7202148 -8.4186287 -0.0396729 0.4362793 -1.9380875 } } phBound { Type BoundBVH AABBMin 1203.0765381 2735.4228516 35.1310234 AABBMax 1209.2454834 2740.9433594 52.9430809 Radius 9.82091 Centroid 1206.1610107 2738.1831055 44.0370522 CG 1206.1253662 2738.2084961 44.0345993 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.40161 } } ComputePolyNeighbors True Vertices 2 { 1207.1229248 2737.4973145 51.3355255 1205.1990967 2738.8688965 36.7385788 } } phBound { Type BoundBVH AABBMin 1160.8023682 2786.0529785 34.9480286 AABBMax 1161.9935303 2787.0769043 39.8075867 Radius 2.55356 Centroid 1161.3979492 2786.5649414 37.3778076 CG 1161.1890869 2786.1264648 37.3710365 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.470405 } } ComputePolyNeighbors True Vertices 2 { 1161.4710693 2786.5593262 39.3197670 1161.3248291 2786.5705566 35.4358482 } } phBound { Type BoundBVH AABBMin 1155.8383789 2780.9416504 38.9379234 AABBMax 1167.2458496 2791.1760254 47.4770851 Radius 8.77197 Centroid 1161.5421143 2786.0588379 43.2075043 CG 1161.6770020 2786.7768555 41.9326973 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 3 { Capsule 0 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 1.4316 } Capsule 1 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 2.24475 } Capsule 2 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.397291 } } ComputePolyNeighbors True Vertices 6 { 1166.6180420 2790.5715332 41.3433228 1163.0013428 2788.0729980 40.1312408 1161.6315918 2786.5600586 45.1493759 1161.4855957 2786.5708008 41.2656326 1159.1069336 2785.2395020 41.1562576 1158.0561523 2783.3688965 42.5463333 } } phBound { Type BoundBVH AABBMin 1160.2850342 2785.2114258 34.9974709 AABBMax 1162.4390869 2787.6906738 39.1811752 Radius 2.65942 Centroid 1161.3620605 2786.4511719 37.0893250 CG 881.2118530 2115.0429688 28.8335495 Margin 0.005 GeometryCenter 1161.3620605 2786.4511719 37.0893250 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 121 { Tri 0 { Vertices 32 31 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 60 31 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 60 61 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 32 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 16 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 32 18 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 16 12 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 18 17 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 12 14 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 59 18 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 58 18 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 15 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 19 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 14 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 12 13 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 20 21 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 21 20 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 22 62 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 62 14 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 20 19 75 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 20 75 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 26 22 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 26 27 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 55 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 66 62 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 22 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 22 28 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 67 70 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 34 70 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 70 34 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 34 33 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 30 33 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 33 34 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 63 68 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 68 63 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 67 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 5 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 25 67 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 25 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 25 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 6 5 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 4 69 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 29 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 27 56 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 55 56 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 28 40 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 37 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 28 37 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 37 39 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 37 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 51 23 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 51 50 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 25 50 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 38 40 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 38 71 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 72 50 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 50 69 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 18 58 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 30 58 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 57 33 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 35 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 64 59 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 62 64 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 39 64 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 62 66 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 63 33 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 6 63 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 4 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 4 7 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 65 38 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 69 7 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 39 38 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 38 65 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 63 57 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 57 58 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 35 8 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 59 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 64 36 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 39 73 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 39 54 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 73 39 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 63 8 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 11 46 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 48 6 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 7 6 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 48 41 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 54 65 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 7 41 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 43 54 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 3 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 3 8 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 49 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 8 3 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 3 36 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 49 9 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 52 9 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 64 73 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 0 36 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 43 42 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 0 73 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 42 74 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 36 0 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 8 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 11 10 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 41 42 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 46 47 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 10 49 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 47 46 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 48 47 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 48 45 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 47 49 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 117 { Vertices 47 52 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 118 { Vertices 53 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 119 { Vertices 44 41 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 120 { Vertices 41 44 42 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 76 { 0.5008545 -0.2629395 1.3647423 0.3605957 -0.3898926 1.7883377 0.4016113 -0.4809570 1.6752090 -0.3061523 -0.3837891 1.6895752 -0.0419922 0.8039551 -1.1933250 -0.4636230 0.5490723 -1.5705757 -0.1853027 0.6633301 -0.7089500 0.2760010 0.6799316 -0.0882034 -0.3216553 -0.1442871 1.0295639 -0.3713379 -0.1875000 1.3738060 -0.4484863 0.2385254 1.0477600 -0.3579102 0.5627441 -0.0114632 -0.2042236 -0.5380859 -1.3616829 -0.1379395 -0.5024414 -2.0829811 0.0889893 -0.4846191 -1.3890076 0.0758057 -0.5371094 -2.0840034 -0.3822021 -1.1198730 -2.0632553 -0.6461182 -0.9746094 -2.0650406 -0.4670410 -0.4191895 -1.4213753 0.2593994 -1.0161133 -2.0658073 0.3680420 -0.6477051 -1.5849419 0.2551270 -0.4953613 -1.3083076 0.5347900 -0.3918457 -1.5189896 0.3254395 1.1501465 -2.0574455 -0.0366211 1.2395020 -2.0648499 -0.0173340 1.0173340 -1.7478676 0.7170410 -0.5344238 -2.0507393 0.7709961 -0.2419434 -1.7783203 0.4031982 -0.0080566 -2.0861092 0.4716797 -0.1457520 -2.0918541 -0.5257568 -0.2116699 -1.3571472 -0.7259521 -0.2312012 -1.6404190 -0.5533447 -0.3090820 -2.0755768 -0.5217285 -0.0285645 -1.1005630 -0.6127930 0.0305176 -1.6064568 -0.2261963 -0.3369141 0.2700844 0.0593262 -0.3757324 1.3968544 0.3656006 0.3146973 -1.5287590 0.4798584 0.4172363 -1.3358879 0.4049072 0.0017090 -0.7044792 0.5070801 0.3400879 -2.0813866 0.3432617 0.6608887 1.0393944 0.5140381 0.3640137 1.4236031 0.5532227 0.1970215 0.3272896 0.4375000 0.5942383 1.7459488 0.1824951 0.8212891 2.0296669 -0.2938232 0.6357422 1.0402260 -0.3636475 0.6267090 1.4273720 -0.0694580 0.7270508 0.6575508 -0.5655518 0.3811035 1.3205605 0.3302002 0.7385254 -1.6058807 0.3189697 0.9248047 -2.0679779 -0.4833984 0.5461426 2.0918503 -0.2478027 0.6738281 2.0813179 0.5223389 0.3583984 -0.0216141 1.0770264 -0.1022949 -2.0446129 1.0246582 0.0329590 -2.0432053 -0.4445801 -0.0327148 -0.3627281 -0.3698730 -0.2045898 -0.6996918 -0.0471191 -0.4541016 -0.7684517 -1.0770264 -0.3334961 -2.0610809 -0.9276123 -0.4677734 -2.0677223 0.3941650 -0.3225098 -1.0204391 -0.5262451 0.2487793 -0.7095871 0.1428223 -0.4104004 -0.0505333 0.4940186 0.6889648 -0.2939682 0.3643799 -0.1059570 -1.0332069 -0.7115479 0.5693359 -2.0717430 -0.6536865 0.3439941 -1.6552315 0.2547607 0.7114258 -0.5795403 -0.8275146 0.0161133 -2.0723839 0.9489746 0.5634766 -2.0685539 0.5672607 0.6962891 -2.0789604 0.4259033 -0.1528320 0.3018150 0.6346436 0.1284180 1.7991943 0.7254639 -1.2397461 -2.0486336 } } phBound { Type BoundBVH AABBMin 1219.4184570 2668.3649902 34.9584732 AABBMax 1224.4499512 2672.8981934 72.6077652 Radius 19.1268 Centroid 1221.9342041 2670.6315918 53.7831192 CG 1118.0590820 2441.8957520 39.9648209 Margin 0.005 GeometryCenter 1222.9559326 2669.8107910 41.2000618 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 109 { Sphere 0 { MaterialIndex 1 Center 66 Radius 1.34037 } Capsule 1 { MaterialIndex 1 CenterTop 64 CenterBottom 65 Radius 0.67387 } Tri 2 { Vertices 24 59 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 52 59 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 15 59 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 59 15 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 11 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 39 42 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 11 42 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 25 51 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 38 25 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 27 25 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 27 38 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 11 12 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 24 50 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 24 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 10 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 27 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 26 27 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 24 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 10 55 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 22 52 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 22 36 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 15 52 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 36 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 14 13 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 13 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 9 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 22 24 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 37 20 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 26 37 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 34 22 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 36 54 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 13 54 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 55 10 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 36 22 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 36 53 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 53 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 36 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 12 55 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 37 26 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 37 46 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 20 37 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 23 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 20 21 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 49 22 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 49 35 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 35 49 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 12 56 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 56 46 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 56 12 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 17 57 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 55 53 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 17 53 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 53 36 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 35 48 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 46 19 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 46 56 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 23 46 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 32 31 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 30 49 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 30 3 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 49 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 35 4 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 43 35 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 35 43 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 56 57 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 57 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 30 23 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 30 21 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 46 47 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 3 2 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 18 32 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 0 2 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 3 30 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 7 0 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 18 47 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 19 56 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 19 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 44 18 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 43 17 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 44 17 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 44 43 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 32 33 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 18 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 18 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 33 8 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 8 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 8 7 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 18 44 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 0 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 1 29 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 2 1 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 6 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 8 45 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 8 5 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 41 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 28 29 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 60 29 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 40 29 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 40 44 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 33 45 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 60 61 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 5 62 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 62 5 45 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 67 { -0.7143555 0.9299316 2.5103416 -0.3356934 1.0439453 4.2505150 -0.5827637 1.0080566 2.6464500 -0.7100830 0.7033691 2.0491600 -0.4323730 0.8239746 0.6438103 -1.0734863 0.2734375 3.9294739 -0.8303223 0.9277344 4.1867714 -0.9053955 0.2451172 3.2747536 -0.7668457 -0.1088867 3.5274544 1.0279541 0.1323242 -4.2080193 0.6612549 0.1350098 -2.3351707 0.8381348 -0.2055664 -3.2994499 0.7263184 -0.4287109 -2.5752411 0.3043213 0.5305176 -2.3874397 0.1693115 0.5681152 -4.1069412 -0.2164307 0.5515137 -3.8892708 0.4602051 -0.0898438 1.9526787 0.4963379 0.2719727 1.7373085 0.2972412 -0.1794434 2.1088905 0.1918945 -0.5969238 1.5822411 -0.8067627 -0.1459961 -0.8396492 -0.9377441 0.1115723 0.5553589 -0.6850586 0.2561035 -1.6609230 -0.7379150 -0.3767090 0.5191803 -0.6488037 -0.5949707 -2.6883812 -0.0321045 -0.9533691 -2.8353996 -0.1944580 -0.8310547 -1.8159904 0.4912109 -0.7878418 -2.8400002 -0.0185547 0.9235840 4.5376778 0.2176514 0.6684570 3.1139450 -0.8569336 0.1320801 2.2513199 -0.6483154 -0.2807617 1.9934502 -0.3634033 -0.4719238 2.2467308 -0.5568848 -0.2373047 4.6123390 -0.3137207 0.6784668 -1.1675911 -0.1290283 0.7373047 -0.3221893 0.1755371 0.6706543 -1.8699684 -0.6353760 -0.6123047 -1.5776520 0.5108643 -0.8186035 -4.3946724 0.8422852 -0.7368164 -4.6927414 0.0939941 -0.1840820 4.1574783 -0.2474365 -0.3520508 4.1212959 1.1395264 -0.1833496 -4.2861290 0.2410889 0.7465820 2.3541183 0.3601074 0.5097656 2.8583755 -0.7707520 -0.1125488 4.2775116 -0.4248047 -0.5178223 0.5754700 -0.0494385 -0.5678711 1.4938011 0.3070068 0.6579590 0.7500572 -0.8214111 0.4045410 0.4669189 -0.4935303 -0.8151855 -4.0374489 -0.2491455 -0.9689941 -4.0403214 -0.4603271 0.3073730 -2.6677017 0.5783691 0.3134766 -1.0475502 0.7462158 0.3308105 -1.5782204 0.7747803 -0.1071777 -1.7711906 0.1923828 -0.3566895 1.0550194 0.4527588 -0.0405273 0.8040390 -0.0319824 -1.0439453 -4.6818314 -0.7686768 -0.0104980 -4.5014915 0.3090820 0.2758789 4.0058594 0.2185059 0.0561523 4.6146355 -1.1395264 0.5449219 4.6927414 -0.6330566 0.2885742 -4.3814583 -2.5406494 2.1022944 30.6685219 0.3199464 -0.1037594 -4.5089607 0.1536865 -0.1054688 -4.9012184 } } phBound { Type BoundBVH AABBMin 1414.7235107 2631.7304688 44.9183655 AABBMax 1415.9906006 2633.8896484 56.2850494 Radius 5.81956 Centroid 1415.3570557 2632.8100586 50.6017075 CG 1415.5128174 2633.0666504 50.5924911 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.301516 } } ComputePolyNeighbors True Vertices 2 { 1415.5928955 2633.4697266 55.9469070 1415.1212158 2632.1503906 45.2565079 } } phBound { Type BoundBVH AABBMin 1414.5428467 2631.5778809 44.9325638 AABBMax 1415.6497803 2632.8518066 48.5364761 Radius 1.98975 Centroid 1415.0963135 2632.2148438 46.7345200 CG 1063.0439453 1977.3710938 34.8594475 Margin 0.005 GeometryCenter 1415.0963135 2632.2148438 46.7345200 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 83 { Tri 0 { Vertices 27 22 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 37 22 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 23 22 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 51 49 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 3 37 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 49 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 6 3 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 50 12 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 26 27 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 21 46 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 20 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 46 20 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 45 46 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 39 47 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 48 47 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 47 48 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 11 6 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 11 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 52 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 43 52 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 5 37 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 37 5 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 24 21 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 21 24 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 20 21 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 41 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 39 20 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 19 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 18 48 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 44 48 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 4 3 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 5 31 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 31 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 25 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 24 25 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 35 34 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 34 41 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 23 31 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 41 34 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 38 48 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 7 11 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 6 10 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 10 6 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 11 8 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 8 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 0 43 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 43 0 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 42 48 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 38 0 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 17 18 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 17 38 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 19 34 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 19 14 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 33 31 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 4 10 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 29 25 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 29 31 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 30 35 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 17 0 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 30 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 34 30 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 28 25 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 25 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 10 32 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 32 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 7 2 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 9 8 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 2 7 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 1 0 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 16 1 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 16 17 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 40 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 33 40 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 36 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 30 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 30 36 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 14 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 53 { 0.3713379 0.3361816 0.8407936 0.4064941 0.3715820 1.5392303 0.3425293 0.1772461 1.4242859 0.1439209 -0.3474121 -1.2739143 0.0280762 -0.1059570 -0.1099091 -0.0434570 -0.2194824 -0.9446030 0.2314453 -0.2158203 -0.9557381 0.3452148 0.1223145 0.4443398 0.2567139 0.0292969 0.5975227 0.2307129 0.1015625 1.4366570 0.1184082 0.0214844 0.7441826 0.3538818 -0.1130371 -1.1216850 0.4991455 -0.1638184 -1.7528076 0.2791748 0.6242676 1.7993698 0.1531982 0.5356445 0.8269615 0.1610107 0.6369629 1.8019562 0.3521729 0.5549316 1.6623840 0.2558594 0.5031738 0.8256111 0.1115723 0.4169922 -0.5966225 -0.0324707 0.3859863 -0.5911102 -0.1756592 0.3261719 -1.1436157 -0.2933350 0.1901855 -1.1168480 -0.2989502 -0.4191895 -1.6865616 -0.2062988 -0.1516113 -1.0924988 -0.2672119 0.0517578 -0.9597855 -0.1730957 0.1696777 0.1520309 -0.5534668 0.0698242 -1.7086639 -0.5025635 -0.1936035 -1.7032661 -0.1158447 0.4562988 1.4119148 -0.1163330 0.3159180 1.4277153 -0.0625000 0.5102539 1.1179199 -0.0876465 -0.0827637 -0.3985634 0.0928955 0.1196289 1.4390755 -0.0377197 0.1335449 1.1597557 -0.0653076 0.3830566 -0.0143127 -0.1286621 0.3315430 0.2733841 0.0147705 0.6005859 1.6699753 -0.0581055 -0.3293457 -1.2562561 0.2916260 0.3879395 -0.0181351 -0.0532227 0.4177246 -1.3456688 -0.0317383 0.2504883 1.7108574 -0.1491699 0.2900391 -0.5705299 0.3348389 0.2478027 -0.8648605 0.3790283 0.0859375 -0.9925690 0.3948975 0.3793945 -1.8007202 -0.1679688 0.4626465 -1.7878418 -0.4002686 0.2863770 -1.7595558 0.0994873 0.4963379 -1.8019562 0.1901855 0.3952637 -1.1666183 0.1452637 -0.5573730 -1.6744728 0.3865967 -0.3857422 -1.7169876 -0.0598145 -0.6369629 -1.6367378 0.5534668 0.0979004 -1.7761993 } } phBound { Type BoundBVH AABBMin 1348.6590576 2655.4750977 35.5764084 AABBMax 1354.5889893 2660.6987305 89.9777145 Radius 27.4861 Centroid 1351.6240234 2658.0869141 62.7770615 CG 1351.6838379 2658.0764160 62.7785072 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.952422 } } ComputePolyNeighbors True Vertices 2 { 1350.0510254 2656.8552246 88.9555817 1353.1970215 2659.3186035 36.5985413 } } phBound { Type BoundBVH AABBMin 1351.1533203 2656.4829102 35.6577148 AABBMax 1355.6688232 2661.8125000 46.0032425 Radius 6.24148 Centroid 1353.4111328 2659.1477051 40.8304787 CG 993.0869141 1951.5316162 24.4561634 Margin 0.005 GeometryCenter 1353.4111328 2659.1477051 40.8304787 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.4113770 0.4399414 5.1027603 -1.4559326 0.1345215 0.2780991 -1.7043457 -0.4643555 5.0423241 -1.4366455 -0.4062500 0.2315369 -1.0830078 0.5356445 0.2728386 -0.2565918 0.9089355 0.2213326 -0.8018799 0.9470215 0.2731552 -0.4815674 0.6359863 5.1679802 0.1885986 0.6406250 0.1527634 0.1552734 -0.0725098 5.1727638 0.4908447 0.2590332 0.0923271 -0.1379395 -0.9765625 5.1123276 0.3974609 -0.3264160 0.0562897 0.4829102 2.6647949 -4.8622932 -0.0920410 2.5927734 -4.9002457 0.4898682 1.9633789 -4.2394371 0.0076904 1.9592285 -4.2686195 0.4063721 1.3342285 -2.9294624 -0.0515137 1.4108887 -2.9533806 1.7988281 0.1220703 -4.9032745 2.2576904 0.5800781 -4.8540001 1.2767334 0.0397949 -4.2829704 1.6589355 0.4064941 -4.1252632 1.2896729 -0.6743164 -4.9716835 1.7072754 -0.4482422 -4.9358063 0.9885254 -0.5456543 -4.3280983 1.4801025 -0.3850098 -4.2909431 -0.2989502 -1.8190918 -4.6907120 -0.2388916 -2.6647949 -5.1577759 -1.0684814 -1.9257813 -5.1727638 -1.0283203 -1.4433594 -4.6385689 -2.0688477 -0.4428711 -5.1628761 -1.7734375 -0.3281250 -4.4840508 -1.2426758 0.2727051 -3.0788803 -1.3775635 0.5217285 -3.0752106 -1.5744629 0.3195801 -4.4414749 -1.8911133 0.6870117 -4.4430695 -2.2578125 0.6835938 -5.1209373 -1.9377441 0.3283691 -5.1183891 1.0848389 -0.5144043 -2.9760246 0.6668701 -0.0776367 -2.9804916 0.3044434 -0.7268066 0.0344429 1.3913574 1.3117676 -4.8715401 0.9267578 1.3310547 -4.8986511 1.1252441 1.0051270 -4.2464523 0.6575928 1.1679688 -4.2668648 0.8041992 0.7480469 -2.9331322 0.6198730 1.0195313 -2.9313774 -1.0676270 -1.1726074 5.0471077 -0.1352539 -1.0290527 0.0542145 -0.9256592 -0.9895020 0.1323509 -0.2764893 1.0629883 -2.9833603 0.8768311 0.2099609 -2.9543381 0.5740967 -0.7297363 -3.0170059 -0.4913330 -1.2072754 -3.1807747 -0.9467773 -0.8457031 -3.1911392 -1.4152832 -0.1704102 -3.1102905 -1.1760254 1.5812988 -4.3577576 -1.0704346 1.1989746 -3.0246620 -0.3604736 1.6230469 -4.3067284 -1.6790771 2.2104492 -5.0137825 -0.4252930 1.9248047 -4.9519081 } } phBound { Type BoundBVH AABBMin 1351.2469482 2656.4829102 35.6576233 AABBMax 1355.6679688 2661.8125000 41.1060066 Radius 4.40553 Centroid 1353.4575195 2659.1477051 38.3818130 CG 999.3221436 1963.8658447 25.3203602 Margin 0.005 GeometryCenter 1353.4575195 2659.1477051 38.3818130 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { -1.2232666 1.5815430 -1.9091797 0.4426270 1.9633789 -1.7908440 -1.7263184 2.2104492 -2.5652580 0.4356689 2.6647949 -2.4136505 -0.5764160 0.9279785 2.6959229 0.2924805 0.4497070 2.5711212 0.5119629 1.1091309 -0.4823990 1.6116943 0.4067383 -1.6766434 1.4224854 -0.3679199 -1.8422127 2.2104492 0.5800781 -2.4054604 1.6601563 -0.4482422 -2.4872551 -0.2862549 -2.6647949 -2.7091942 -0.3658447 -1.6760254 -2.1562881 -1.1157227 -1.9257813 -2.7241898 -1.0006104 -1.3547363 -2.1812820 -2.2105713 0.1201172 -2.6933327 -1.8128662 0.2014160 -2.0100250 0.8442383 1.0866699 -1.8081665 1.1118164 1.3215332 -2.4364891 0.3037109 -0.5266113 2.4938087 -0.5644531 -1.0166016 2.3726273 -1.4838867 -0.4062500 2.6800652 -1.3167725 0.3352051 2.7241936 } } phBound { Type BoundBVH AABBMin 1392.3809814 2595.9643555 37.0228615 AABBMax 1393.6090088 2596.8955078 44.8653984 Radius 3.99626 Centroid 1392.9949951 2596.4299316 40.9441299 CG 1393.0434570 2596.4396973 40.9497757 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.198825 } } ComputePolyNeighbors True Vertices 2 { 1393.3214111 2596.2448730 44.6475449 1392.6685791 2596.6149902 37.2407150 } } phBound { Type BoundBVH AABBMin 1392.3084717 2596.2878418 37.0270119 AABBMax 1393.0300293 2597.0126953 39.5402069 Radius 1.35667 Centroid 1392.6691895 2596.6503906 38.2836075 CG 1046.3236084 1950.5544434 29.3394852 Margin 0.005 GeometryCenter 1392.6691895 2596.6503906 38.2836075 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 83 { Tri 0 { Vertices 37 22 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 23 22 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 51 49 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 3 37 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 49 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 6 3 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 50 12 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 11 6 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 27 22 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 26 27 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 21 46 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 20 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 11 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 52 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 43 52 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 46 20 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 48 47 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 47 48 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 45 46 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 39 47 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 24 21 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 37 5 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 21 24 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 44 48 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 5 37 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 18 48 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 39 20 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 20 21 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 19 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 41 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 25 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 5 31 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 23 31 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 24 25 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 4 3 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 11 8 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 31 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 7 11 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 35 34 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 34 41 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 38 48 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 10 6 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 6 10 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 8 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 43 0 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 0 43 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 42 48 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 38 0 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 41 34 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 17 38 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 17 18 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 19 14 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 19 34 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 4 10 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 33 31 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 29 31 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 29 25 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 17 0 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 30 35 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 30 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 34 30 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 28 25 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 25 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 10 32 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 7 2 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 2 7 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 9 8 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 32 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 1 0 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 16 1 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 16 17 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 40 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 33 40 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 14 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 36 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 30 36 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 30 15 14 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 53 { 0.3166504 -0.0871582 0.5652008 0.3527832 -0.1440430 1.0443878 0.2756348 -0.2424316 0.9506683 0.0256348 -0.2551270 -0.9331436 0.0084229 -0.2043457 -0.1118584 -0.0664063 -0.1757813 -0.6898460 0.1083984 -0.2214355 -0.7070580 0.2569580 -0.1752930 0.2760124 0.1855469 -0.2338867 0.3754692 0.1911621 -0.2712402 0.9563255 0.0980225 -0.2294922 0.4799652 0.2028809 -0.1613770 -0.8155861 0.2790527 -0.1533203 -1.2565956 0.3208008 0.0100098 1.2494659 0.2144775 0.0783691 0.5815544 0.2482910 0.0388184 1.2565994 0.3530273 -0.0322266 1.1470261 0.2736816 0.0395508 0.5740356 0.1513672 0.1596680 -0.4003487 0.0544434 0.1652832 -0.3941879 -0.0529785 0.2109375 -0.7719803 -0.1520996 0.1437988 -0.7616692 -0.2725830 -0.1779785 -1.2056274 -0.1588135 -0.0886230 -0.7789574 -0.1589355 0.0358887 -0.6677551 -0.0660400 -0.0227051 0.0991898 -0.3450928 0.1762695 -1.1675644 -0.3607178 0.0014648 -1.1893845 0.0357666 0.0156250 0.9838066 0.0101318 -0.0739746 0.9819832 0.0762939 0.0705566 0.7858582 -0.0637207 -0.1389160 -0.3028297 0.1071777 -0.2355957 0.9645424 0.0239258 -0.1745605 0.7796593 0.0393066 0.1093750 0.0008926 -0.0072021 0.0583496 0.1950798 0.1475830 0.0559082 1.1684189 -0.0989990 -0.2094727 -0.9121742 0.2663574 0.0490723 -0.0141830 0.0390625 0.2675781 -0.9061661 0.0548096 -0.1596680 1.1665192 -0.0367432 0.1237793 -0.3845749 0.2592773 0.0415039 -0.6069412 0.2564697 -0.0544434 -0.7103119 0.3112793 0.2109375 -1.2367096 -0.0301514 0.3623047 -1.2001610 -0.2092285 0.2900391 -1.1883392 0.1453857 0.3369141 -1.2164001 0.1911621 0.1914063 -0.7946167 -0.0161133 -0.3452148 -1.2257805 0.1677246 -0.2763672 -1.2480278 -0.1601563 -0.3625488 -1.1997719 0.3608398 0.0034180 -1.2510147 } } phBound { Type BoundBVH AABBMin 1313.2663574 2638.1923828 35.5320473 AABBMax 1318.4497070 2640.4555664 79.9758911 Radius 22.4011 Centroid 1315.8580322 2639.3239746 57.7539673 CG 1315.7402344 2639.2070313 57.7514038 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.716276 } } ComputePolyNeighbors True Vertices 2 { 1317.5676270 2639.0292969 79.2042084 1314.1484375 2639.6186523 36.3037338 } } phBound { Type BoundBVH AABBMin 1312.8952637 2638.4172363 35.8253174 AABBMax 1315.5700684 2640.8132324 45.7147293 Radius 5.2606 Centroid 1314.2326660 2639.6152344 40.7700233 CG 1008.9760132 2026.5725098 25.5436420 Margin 0.005 GeometryCenter 1314.2326660 2639.6152344 40.7700233 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 91 { Tri 0 { Vertices 37 34 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 37 5 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 3 38 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 33 18 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 17 18 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 28 16 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 5 34 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 28 18 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 18 28 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 5 18 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 43 52 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 38 45 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 38 3 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 43 53 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 15 25 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 42 25 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 41 25 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 25 41 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 43 42 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 43 44 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 42 44 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 44 43 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 1 45 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 5 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 1 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 4 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 50 4 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 39 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 45 1 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 50 35 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 41 26 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 26 41 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 27 50 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 2 4 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 44 39 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 44 22 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 35 50 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 35 11 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 32 50 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 1 0 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 40 1 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 12 13 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 39 1 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 40 22 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 10 9 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 11 32 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 11 35 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 9 2 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 27 49 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 2 9 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 49 27 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 26 24 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 26 22 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 13 22 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 22 13 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 32 31 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 9 10 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 8 10 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 31 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 9 8 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 23 13 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 29 32 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 23 21 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 29 24 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 29 49 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 29 21 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 51 6 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 31 47 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 6 8 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 6 7 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 12 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 7 0 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 7 12 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 13 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 13 14 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 12 7 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 36 14 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 36 19 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 21 20 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 20 46 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 31 30 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 30 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 48 47 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 46 20 48 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 54 { -0.1796875 0.0009766 2.0446091 -0.4189453 0.3618164 -1.1884346 -0.2429199 -0.3205566 -0.4683456 -0.7069092 -0.0375977 -3.1507645 -0.3811035 -0.2011719 -1.8169785 -0.6723633 -0.4497070 -3.8227844 0.0356445 -0.4353027 4.4499550 0.0013428 -0.0104980 4.2333450 0.0291748 -0.4277344 3.1403542 -0.0523682 -0.6464844 1.9861336 0.1551514 -0.7958984 2.0178223 0.1784668 -0.6069336 1.4903107 0.1696777 0.6193848 2.2068748 0.3442383 0.7180176 1.7984581 0.3021240 0.5891113 4.2281380 1.1102295 -0.1708984 -4.9447060 0.6047363 -0.4125977 -4.3403473 0.6960449 -0.8981934 -4.7781563 -0.2485352 -0.8237305 -4.3092728 0.9200439 0.6289063 4.5728760 1.1181641 0.4558105 4.4011192 0.9976807 0.5068359 1.9333229 0.7375488 0.5847168 1.3713646 0.7811279 0.7778320 1.7667694 1.0716553 0.3120117 1.5971565 0.9268799 0.3959961 -4.9180717 0.9337158 0.2536621 0.4723282 0.9880371 -0.0625000 0.5664711 0.7557373 -0.1657715 -3.9043770 1.0834961 -0.2534180 2.5727348 1.2541504 0.0622559 2.8972664 0.8415527 -0.4838867 2.6896896 0.5708008 -0.7824707 1.9155655 -0.2585449 -1.1979980 -4.7463150 -1.0410156 -0.8088379 -4.6319656 -0.1397705 -0.5434570 -0.8113976 0.1348877 0.3876953 4.4560776 -1.3374023 -0.2229004 -4.6613579 -1.2137451 0.1726074 -4.6001244 0.0078125 0.8000488 -1.1500130 0.2772217 0.6569824 0.5262108 0.6297607 0.5793457 -3.8299789 0.0755615 1.0087891 -4.3524399 -0.4627686 0.7863770 -3.7886467 0.4014893 0.8364258 -2.6679497 -0.3852539 0.5493164 -2.6246300 1.1296387 0.0700684 3.1982193 1.2498779 -0.4135742 4.7750969 1.3374023 -0.1184082 4.9447060 1.1263428 -0.0869141 1.3096733 0.3988037 -0.4812012 -2.6431503 0.3917236 -0.7016602 4.7161598 -0.7813721 1.0776367 -4.6030312 0.1853027 1.1979980 -4.7440186 } } phBound { Type BoundBVH AABBMin 1265.7481689 2715.5471191 42.8170624 AABBMax 1283.3157959 2733.1149902 60.3847198 Radius 15.2141 Centroid 1274.5319824 2724.3310547 51.6008911 CG 1274.5285645 2724.2932129 51.6007004 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 52 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Sphere 0 { MaterialIndex 0 Center 0 Radius 8.78383 } } ComputePolyNeighbors True Vertices 1 { 1274.5319824 2724.3310547 51.6008911 } } phBound { Type BoundBVH AABBMin 1271.8190918 2722.5332031 36.1292953 AABBMax 1276.8452148 2727.4184570 42.7423325 Radius 4.81819 Centroid 1274.3321533 2724.9758301 39.4358139 CG 1149.1896973 2452.6640625 -3.5471315 Margin 0.005 GeometryCenter 1274.3321533 2724.9758301 39.4358139 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 232 { Tri 0 { Vertices 77 34 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 34 37 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 37 34 76 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 76 34 77 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 78 76 77 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 76 47 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 78 49 76 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 47 76 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 77 49 78 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 49 48 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 46 47 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 48 49 80 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 36 63 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 63 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 102 63 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 102 64 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 122 35 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 122 102 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 122 123 102 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 116 66 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 65 64 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 102 116 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 102 101 116 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 101 102 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 56 55 102 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 54 55 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 123 56 102 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 126 48 80 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 126 46 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 79 80 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 79 126 80 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 15 46 125 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 126 79 127 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 125 126 127 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 125 127 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 115 79 113 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 127 79 115 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 127 115 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 113 114 115 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 114 0 115 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 115 0 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 13 2 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 0 2 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 12 2 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 0 120 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 11 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 46 126 125 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 115 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 14 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 11 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 11 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 10 69 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 101 66 116 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 66 101 100 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 100 101 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 100 55 86 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 54 86 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 100 86 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 65 66 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 67 66 86 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 65 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 108 67 86 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 68 67 108 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 68 108 109 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 108 86 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 108 41 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 40 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 73 39 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 109 108 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 39 92 109 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 92 39 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 68 109 92 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 74 38 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 40 58 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 38 39 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 72 38 75 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 38 74 75 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 38 72 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 72 75 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 92 73 93 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 10 11 84 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 83 69 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 83 10 84 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 82 83 84 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 83 82 103 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 74 58 103 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 81 20 82 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 103 82 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 1 84 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 120 85 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 1 85 84 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 119 85 120 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 84 85 82 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 81 82 85 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 81 85 121 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 119 121 85 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 20 74 103 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 74 20 75 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 18 75 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 73 75 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 73 18 93 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 95 93 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 94 93 95 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 92 93 94 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 19 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 81 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 121 19 81 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 19 121 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 17 18 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 95 18 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 135 121 119 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 121 135 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 47 118 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 117 { Vertices 47 46 118 Siblings -1 -1 -1 MaterialIndex 0 } Tri 118 { Vertices 37 117 122 Siblings -1 -1 -1 MaterialIndex 0 } Tri 119 { Vertices 118 117 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 120 { Vertices 122 117 123 Siblings -1 -1 -1 MaterialIndex 0 } Tri 121 { Vertices 107 118 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 122 { Vertices 123 106 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 123 { Vertices 123 105 106 Siblings -1 -1 -1 MaterialIndex 0 } Tri 124 { Vertices 105 123 117 Siblings -1 -1 -1 MaterialIndex 0 } Tri 125 { Vertices 7 117 118 Siblings -1 -1 -1 MaterialIndex 0 } Tri 126 { Vertices 118 107 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 127 { Vertices 7 105 117 Siblings -1 -1 -1 MaterialIndex 0 } Tri 128 { Vertices 89 107 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 129 { Vertices 46 16 89 Siblings -1 -1 -1 MaterialIndex 0 } Tri 130 { Vertices 15 16 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 131 { Vertices 15 14 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 132 { Vertices 98 14 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 133 { Vertices 12 9 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 134 { Vertices 71 14 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 135 { Vertices 9 8 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 136 { Vertices 98 26 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 137 { Vertices 16 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 138 { Vertices 16 14 98 Siblings -1 -1 -1 MaterialIndex 0 } Tri 139 { Vertices 26 98 97 Siblings -1 -1 -1 MaterialIndex 0 } Tri 140 { Vertices 98 71 96 Siblings -1 -1 -1 MaterialIndex 0 } Tri 141 { Vertices 96 97 98 Siblings -1 -1 -1 MaterialIndex 0 } Tri 142 { Vertices 97 96 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 143 { Vertices 70 96 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 144 { Vertices 87 86 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 145 { Vertices 41 86 87 Siblings -1 -1 -1 MaterialIndex 0 } Tri 146 { Vertices 41 130 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 147 { Vertices 40 130 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 148 { Vertices 106 53 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 149 { Vertices 56 53 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 150 { Vertices 54 56 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 151 { Vertices 32 87 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 152 { Vertices 28 87 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 153 { Vertices 41 87 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 154 { Vertices 41 28 130 Siblings -1 -1 -1 MaterialIndex 0 } Tri 155 { Vertices 130 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 156 { Vertices 71 8 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 157 { Vertices 8 69 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 158 { Vertices 69 83 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 159 { Vertices 103 57 83 Siblings -1 -1 -1 MaterialIndex 0 } Tri 160 { Vertices 57 103 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 161 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 162 { Vertices 58 40 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 163 { Vertices 59 40 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 164 { Vertices 42 96 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 165 { Vertices 111 70 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 166 { Vertices 69 57 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 167 { Vertices 57 60 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 168 { Vertices 60 57 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 169 { Vertices 30 59 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 170 { Vertices 27 28 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 171 { Vertices 27 29 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 172 { Vertices 7 107 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 173 { Vertices 4 107 88 Siblings -1 -1 -1 MaterialIndex 0 } Tri 174 { Vertices 88 107 89 Siblings -1 -1 -1 MaterialIndex 0 } Tri 175 { Vertices 88 89 90 Siblings -1 -1 -1 MaterialIndex 0 } Tri 176 { Vertices 6 5 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 177 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 178 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 179 { Vertices 131 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 180 { Vertices 7 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 181 { Vertices 131 4 88 Siblings -1 -1 -1 MaterialIndex 0 } Tri 182 { Vertices 88 90 91 Siblings -1 -1 -1 MaterialIndex 0 } Tri 183 { Vertices 91 90 124 Siblings -1 -1 -1 MaterialIndex 0 } Tri 184 { Vertices 105 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 185 { Vertices 6 51 105 Siblings -1 -1 -1 MaterialIndex 0 } Tri 186 { Vertices 105 51 106 Siblings -1 -1 -1 MaterialIndex 0 } Tri 187 { Vertices 51 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 188 { Vertices 53 106 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 189 { Vertices 50 32 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 190 { Vertices 31 87 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 191 { Vertices 31 21 87 Siblings -1 -1 -1 MaterialIndex 0 } Tri 192 { Vertices 6 7 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 193 { Vertices 52 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 194 { Vertices 50 51 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 195 { Vertices 50 52 132 Siblings -1 -1 -1 MaterialIndex 0 } Tri 196 { Vertices 132 33 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 197 { Vertices 32 50 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 198 { Vertices 31 32 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 199 { Vertices 112 21 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 200 { Vertices 129 16 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 201 { Vertices 90 89 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 202 { Vertices 129 90 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 203 { Vertices 24 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 204 { Vertices 25 24 129 Siblings -1 -1 -1 MaterialIndex 0 } Tri 205 { Vertices 124 90 129 Siblings -1 -1 -1 MaterialIndex 0 } Tri 206 { Vertices 124 129 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 207 { Vertices 124 24 134 Siblings -1 -1 -1 MaterialIndex 0 } Tri 208 { Vertices 24 128 134 Siblings -1 -1 -1 MaterialIndex 0 } Tri 209 { Vertices 24 26 128 Siblings -1 -1 -1 MaterialIndex 0 } Tri 210 { Vertices 97 128 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 211 { Vertices 128 97 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 212 { Vertices 44 128 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 213 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 214 { Vertices 42 45 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 215 { Vertices 70 111 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 216 { Vertices 21 99 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 217 { Vertices 28 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 218 { Vertices 30 61 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 219 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 220 { Vertices 45 42 111 Siblings -1 -1 -1 MaterialIndex 0 } Tri 221 { Vertices 110 45 111 Siblings -1 -1 -1 MaterialIndex 0 } Tri 222 { Vertices 110 111 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 223 { Vertices 110 60 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 224 { Vertices 22 21 112 Siblings -1 -1 -1 MaterialIndex 0 } Tri 225 { Vertices 21 22 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 226 { Vertices 23 99 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 227 { Vertices 99 133 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 228 { Vertices 28 133 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 229 { Vertices 30 133 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 230 { Vertices 61 30 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 231 { Vertices 61 62 104 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 136 { 2.3499756 -0.7766113 -3.1961136 1.6553955 -0.0847168 -3.0633011 1.3565674 -0.4682617 -3.1066856 -1.4396973 -1.4821777 1.3345795 -1.1809082 -1.7465820 1.0134926 -2.1025391 -1.7038574 2.8377838 -1.7750244 -1.1457520 1.1828346 -1.2562256 -1.6220703 0.2759590 1.0814209 -0.4003906 -1.4517365 1.2415771 -0.4885254 -1.7852020 1.1145020 0.1171875 -2.4355583 1.2653809 -0.1391602 -2.4816017 1.1516113 -0.7746582 -2.1725922 1.6152344 -0.8308105 -2.9602623 0.9555664 -1.2546387 -1.3948479 0.8089600 -1.4775391 -2.0259666 0.3022461 -1.9169922 -0.2099648 1.3874512 1.9438477 -3.1265335 1.0742188 1.8269043 -3.1830177 1.0454102 1.8830566 -3.0030327 0.8134766 1.3439941 -3.0029297 0.0914307 0.7265625 0.5987854 0.5484619 1.0107422 3.1384048 0.7983398 1.2490234 3.3065186 0.6173096 -1.8476563 0.9470863 0.5683594 -1.3903809 0.4493942 0.7257080 -1.4414063 0.1533775 0.1937256 1.0957031 -1.1886673 0.6059570 0.8815918 0.7605553 0.5892334 0.8022461 0.1599274 1.1951904 0.5358887 1.0808220 -0.4309082 0.4206543 1.8371811 -1.0559082 0.0925293 1.1354599 -0.4910889 0.2172852 2.0591164 -1.4006348 -1.6650391 -2.8092346 -1.6035156 -1.4277344 -2.5973282 -2.0549316 -1.7023926 -3.0223732 -1.2030029 -1.7832031 -2.4006653 -0.1489258 1.0493164 -2.8073959 -0.2712402 1.4887695 -2.6375389 0.0574951 1.2502441 -2.0319023 -0.6097412 1.0258789 -2.2114754 1.6979980 -0.7644043 0.6895447 2.0838623 -1.1582031 1.7244225 1.8964844 -1.6201172 1.5891533 1.7211914 -0.6120605 1.3943329 0.1241455 -1.5954590 -1.8559074 -0.4750977 -1.6408691 -2.5284653 -0.1975098 -1.8598633 -2.7571564 -0.1118164 -2.3295898 -3.0508156 -1.4951172 -0.3974609 1.3945389 -1.6441650 -0.5712891 0.7356911 -2.1783447 -1.1472168 2.6135979 -1.4215088 -0.2436523 -0.3799210 -1.4130859 0.1962891 -1.7869415 -1.4155273 -0.2075195 -2.4375038 -1.5759277 -0.4448242 -1.5058670 0.9698486 0.5773926 -0.8964386 0.2937012 1.0996094 -2.3593292 0.8352051 1.0170898 -0.7933998 1.3280029 0.4914551 -0.1349640 1.7962646 0.4777832 1.6091080 1.1896973 0.9018555 1.3623085 -1.5880127 -1.0991211 -2.9633331 -2.2524414 -0.9812012 -2.8527222 -2.5130615 0.2277832 -2.8981552 -2.0708008 0.3234863 -2.9034729 -1.7751465 0.8625488 -2.8944702 -1.4808350 1.7409668 -3.0657539 1.0161133 0.0239258 -1.3186188 1.2215576 -0.2006836 -0.2761650 1.2398682 -1.0383301 -1.0515594 -0.1236572 1.2578125 -3.1250000 -0.1138916 1.9340820 -3.0193024 0.5229492 1.1735840 -2.6358032 0.4837646 1.6379395 -3.1730919 -1.2149658 -1.9501953 -2.7101898 -1.1025391 -2.4426270 -3.0546036 -0.9532471 -2.0083008 -2.9478836 0.5485840 -2.0241699 -3.1996956 0.2523193 -1.6337891 -3.1559029 1.1315918 1.2243652 -3.1291962 1.2196045 0.7412109 -3.0511246 0.7525635 0.5903320 -2.0168571 1.0944824 0.3571777 -2.9897308 1.7762451 0.5129395 -3.2365303 -1.3793945 0.6979980 -2.3475609 -0.9450684 0.7363281 -1.2313385 -0.8238525 -1.9689941 1.7435570 -0.2556152 -1.5947266 -0.2294044 -0.3277588 -2.1054688 1.2188530 -0.5439453 -1.9270020 1.8669548 -0.2716064 2.4426270 -3.1302185 0.4693604 2.2565918 -3.0121384 0.7456055 2.2958984 -2.9999619 1.0634766 2.0463867 -3.1798439 1.0812988 -1.0312500 -0.8977699 1.0916748 -1.1892090 -0.0684547 0.8736572 -1.4423828 -0.7685356 0.5852051 0.8405762 1.6656914 -1.4370117 0.3576660 -2.6568794 -1.6820068 -0.2785645 -2.7977753 -1.7623291 -0.8781738 -2.4482460 0.7056885 0.8176270 -2.5131187 1.6412354 0.8134766 1.6188278 -1.5069580 -0.7839355 -0.2884445 -1.3262939 -0.3576660 -0.3674355 -0.4324951 -1.6647949 -0.2483330 -1.2900391 1.3054199 -2.9875832 -0.9844971 1.7880859 -2.9812393 2.0744629 -0.2177734 1.4149017 1.3177490 0.1826172 0.1056976 -0.0924072 0.7087402 2.6449051 1.5222168 -2.0793457 -3.2557678 2.1467285 -1.9150391 -3.2786865 1.6663818 -1.4870605 -3.0220642 -1.8563232 -0.0910645 -2.9052124 -1.3052979 -1.4169922 -0.8460960 -1.0383301 -1.5483398 -0.8484497 2.2049561 0.7373047 -3.3065186 2.5130615 -0.2854004 -3.2451248 1.2604980 1.4101563 -3.1077080 -1.4836426 -1.3337402 -2.0308762 -1.5249023 -1.1269531 -1.1567459 -0.0925293 -1.8596191 1.8230629 0.5325928 -1.5324707 -2.7654419 0.4815674 -1.3957520 -3.1556969 0.7500000 -1.7314453 -3.0286140 1.3750000 -1.8530273 1.3243446 0.5618896 -1.7565918 0.6795158 -0.2626953 1.0395508 -1.3648682 -1.6632080 -2.2438965 3.2757187 -0.9394531 -0.2297363 2.1118126 1.4058838 1.1115723 2.1413841 0.8676758 -2.2495117 1.7265701 2.2625732 1.1726074 -3.2489128 } } phBound { Type BoundBVH AABBMin 1269.1406250 2719.5607910 36.1573181 AABBMax 1280.6396484 2731.4028320 49.8200226 Radius 10.7137 Centroid 1274.8901367 2725.4819336 42.9886703 CG 1257.7960205 2686.6130371 42.9661827 Margin 0.005 GeometryCenter 1274.3325195 2724.9760742 38.7161560 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 104 { Capsule 0 { MaterialIndex 1 CenterTop 81 CenterBottom 82 Radius 1.21727 } Capsule 1 { MaterialIndex 1 CenterTop 79 CenterBottom 80 Radius 0.93669 } Capsule 2 { MaterialIndex 1 CenterTop 77 CenterBottom 78 Radius 0.377935 } Capsule 3 { MaterialIndex 1 CenterTop 75 CenterBottom 76 Radius 0.689016 } Capsule 4 { MaterialIndex 1 CenterTop 73 CenterBottom 74 Radius 0.723199 } Capsule 5 { MaterialIndex 1 CenterTop 71 CenterBottom 72 Radius 0.908857 } Capsule 6 { MaterialIndex 1 CenterTop 69 CenterBottom 70 Radius 0.996776 } Capsule 7 { MaterialIndex 1 CenterTop 67 CenterBottom 68 Radius 0.54127 } Capsule 8 { MaterialIndex 1 CenterTop 65 CenterBottom 66 Radius 0.661514 } Capsule 9 { MaterialIndex 1 CenterTop 63 CenterBottom 64 Radius 0.34729 } Capsule 10 { MaterialIndex 1 CenterTop 61 CenterBottom 62 Radius 0.91625 } Capsule 11 { MaterialIndex 1 CenterTop 59 CenterBottom 60 Radius 0.492437 } Capsule 12 { MaterialIndex 1 CenterTop 57 CenterBottom 58 Radius 0.763206 } Capsule 13 { MaterialIndex 1 CenterTop 55 CenterBottom 56 Radius 0.556599 } Capsule 14 { MaterialIndex 1 CenterTop 53 CenterBottom 54 Radius 0.229236 } Capsule 15 { MaterialIndex 1 CenterTop 51 CenterBottom 52 Radius 0.573593 } Tri 16 { Vertices 47 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 38 47 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 6 5 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 5 4 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 28 35 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 6 35 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 28 3 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 28 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 28 27 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 4 42 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 38 37 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 42 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 36 37 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 37 30 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 37 8 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 8 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 8 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 19 30 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 19 8 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 19 16 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 31 20 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 20 31 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 46 26 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 29 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 26 46 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 43 25 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 43 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 43 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 46 45 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 29 12 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 44 12 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 45 44 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 15 29 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 24 13 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 25 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 25 12 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 12 13 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 15 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 33 15 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 15 33 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 23 33 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 20 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 32 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 22 33 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 32 33 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 31 49 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 33 13 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 49 24 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 24 49 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 11 41 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 4 41 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 4 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 4 27 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 10 27 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 40 27 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 29 48 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 0 48 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 48 29 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 15 1 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 1 15 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 42 41 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 41 9 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 8 36 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 8 7 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 16 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 18 17 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 18 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 20 21 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 23 22 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 34 15 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 0 40 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 11 9 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 2 40 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 10 40 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 9 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 40 7 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 2 34 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 2 1 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 34 21 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 40 21 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 21 34 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 18 7 21 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 83 { 0.5617676 -1.7565918 1.3994064 0.7706299 -1.4875488 0.8689537 1.3747559 -1.8530273 2.0440445 -1.2152100 -1.9504395 -1.9903908 -1.3262939 -1.4672852 -0.1155434 -1.6038818 -1.4277344 -1.8776627 -1.1026611 -2.4426270 -2.3348389 -0.4501953 0.4404297 2.5588417 -1.2124023 0.8710938 -1.5102501 -1.0753174 0.1123047 1.8569984 -1.1810303 -1.7465820 1.7334175 -1.7752686 -1.1459961 1.9027176 1.3562012 -0.4682617 -2.3870277 1.0943604 0.3571777 -2.2699165 1.3181152 -0.1047363 -1.7837219 1.3168945 -1.0996094 -0.3288956 -0.6479492 1.0861816 -1.5039864 -0.2443848 0.9304199 0.2099075 0.5196533 0.9313965 1.4874992 -1.4812012 1.7409668 -2.3461113 -0.2905273 1.5112305 -1.9160728 1.8620605 0.5427246 2.3250313 0.8485107 1.0229492 -0.0760880 1.4904785 0.3742676 0.8153038 2.2624512 1.1726074 -2.5289841 2.5130615 -0.2854004 -2.5252266 0.4813232 -1.3957520 -2.4358788 0.0504150 -1.6154785 -1.1384544 -0.1976318 -1.8598633 -2.0373611 0.7670898 -1.6479492 -0.6643677 -2.5131836 0.2277832 -2.1782722 -0.2719727 2.4426270 -2.4106178 -0.1491699 1.0493164 -2.0874634 0.7701416 0.9567871 -1.8162880 1.7210693 -0.6123047 2.1139793 -0.1119385 -2.3295898 -2.3310814 -1.4351807 -0.0227051 0.3627167 -1.6822510 -0.2788086 -2.0780678 -1.7626953 -0.8784180 -1.7284012 -2.2525635 -0.9812012 -2.1329727 -0.8242188 -1.9692383 2.4634399 -1.6444092 -0.5712891 1.4555588 -1.5384521 -0.9892578 0.1418533 2.1463623 -1.9152832 -2.5588379 1.6148682 -0.8310547 -2.2404823 1.3666992 -1.4250488 -2.0751457 0.5484619 -2.0241699 -2.4799271 -2.0552979 -1.7026367 -2.3026924 0.3109131 -1.9436035 0.5334816 0.8133545 1.3437500 -2.2832756 1.3873291 1.9438477 -2.4066544 3.7969971 1.9912112 5.4649425 3.9447021 5.6103516 7.8209767 3.3852539 1.2983400 3.6318512 5.5864258 1.9848632 3.8468704 3.6341553 1.4536133 4.2201271 3.5948486 1.6362305 5.2004509 1.4045410 0.8016356 4.4295120 2.1799316 1.5928956 7.3633804 3.6591797 1.6093752 4.5088425 5.4819336 0.5844725 5.6726608 0.2329102 0.7607422 8.1948624 0.7954101 0.0620117 4.5541382 2.1242673 -1.0898436 4.2282715 3.8215334 -1.7988282 6.3481979 2.3275146 -2.7812500 8.0902748 2.1514893 -2.3925781 5.6033516 1.7108154 0.5322264 2.7310638 3.1317139 1.2451174 3.6604462 1.8979492 -0.3203125 3.1350098 1.9101563 -0.2534180 3.1310425 1.9545898 -2.2343750 4.6098785 1.3837891 -1.7617188 2.8348160 -1.5728760 -2.5004883 10.2707405 -1.8863525 -1.9252930 6.3757515 -4.0036621 -4.2600098 7.6738052 -2.4509277 -2.9431152 5.7954102 -2.2816162 0.6879883 7.3936539 -0.4864502 0.1142578 4.3038406 -2.1229248 -1.7770997 5.6893616 -1.5164795 -1.4016112 3.5068054 -0.1423340 -0.8537598 2.9819908 -0.1303711 -0.7868652 2.9780235 } } phBound { Type BoundBVH AABBMin 1223.9719238 2595.0446777 39.8116760 AABBMax 1225.7901611 2597.0302734 46.0073013 Radius 3.37766 Centroid 1224.8811035 2596.0375977 42.9094887 CG 875.7618408 1853.9426270 45.3854446 Margin 0.005 GeometryCenter 1224.8811035 2596.0375977 42.9094887 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 117 { Tri 0 { Vertices 61 62 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 61 11 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 58 18 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 62 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 44 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 58 44 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 44 58 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 62 43 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 43 62 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 10 62 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 4 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 11 61 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 17 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 17 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 55 28 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 28 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 68 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 28 54 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 37 31 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 32 31 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 32 37 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 36 29 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 27 29 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 29 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 27 36 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 28 27 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 43 10 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 4 3 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 17 18 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 59 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 55 17 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 54 55 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 54 59 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 47 26 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 31 60 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 4 11 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 22 60 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 30 22 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 32 29 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 47 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 47 29 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 45 8 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 44 6 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 43 6 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 3 6 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 5 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 60 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 60 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 8 7 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 47 59 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 7 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 46 23 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 23 30 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 46 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 22 30 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 38 8 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 8 45 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 66 1 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 66 45 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 60 53 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 6 5 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 25 53 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 24 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 38 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 24 46 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 7 14 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 65 1 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 52 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 66 5 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 53 52 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 52 53 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 50 51 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 53 25 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 20 9 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 20 19 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 14 9 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 9 14 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 40 24 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 48 49 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 40 48 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 25 24 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 2 1 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 2 65 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 41 2 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 65 52 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 51 42 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 51 64 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 63 42 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 51 50 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 38 1 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 0 39 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 38 39 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 39 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 12 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 19 12 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 48 50 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 50 48 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 56 35 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 35 64 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 64 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 34 63 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 35 56 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 40 56 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 56 40 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 40 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 13 57 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 12 13 14 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 69 { -0.5573730 0.3164063 2.7569923 -0.6673584 0.1201172 1.5920181 -0.4855957 0.1652832 2.6489944 -0.0544434 -0.7309570 -0.7841263 0.4572754 -0.6789551 -1.5015144 -0.0361328 -0.5515137 0.4019508 -0.4464111 -0.5922852 -0.3099251 -0.1400146 0.7104492 -0.0067520 -0.6165771 0.1647949 -0.3986244 -0.0952148 0.7419434 0.7397270 0.1599121 -0.8906250 -1.7393761 0.3026123 -0.8315430 -2.4955559 0.2490234 0.8747559 2.5029678 0.4372559 0.7939453 2.7160187 0.3708496 0.7900391 1.6716881 -0.9091797 0.0278320 -2.9581566 -0.8067627 -0.4099121 -2.9779320 -0.7416992 -0.4360352 -2.0060463 -0.6014404 -0.7607422 -2.8090897 -0.1488037 0.8842773 1.6341362 -0.4822998 0.7060547 1.8004112 -0.2258301 0.9926758 3.0177650 0.7170410 0.1372070 -0.3719101 0.5454102 0.5595703 -0.4248619 0.6127930 0.2917480 0.0778618 0.5886230 -0.0610352 0.3278923 0.0203857 0.4523926 -2.0565262 0.1800537 0.3818359 -2.4936523 -0.4216309 0.3718262 -2.4316673 0.4847412 0.2421875 -1.9910240 0.6135254 0.0300293 -1.0766525 0.5717773 -0.4846191 -2.2022667 0.6552734 -0.1276855 -1.9537582 0.5717773 0.1149902 2.9003563 0.4863281 -0.0637207 2.6811256 0.5523682 -0.1496582 2.4769173 0.8509521 0.1718750 -2.9449425 0.9090576 -0.0800781 -2.8738327 -0.6132813 0.3854980 1.5040817 -0.5113525 0.6621094 2.8836212 0.5411377 0.5024414 1.4585419 -0.4747314 0.2448730 3.0978127 -0.1203613 -0.1853027 2.8416023 -0.2396240 -0.7570801 -1.0211334 -0.4755859 -0.7438965 -1.2949295 -0.6096191 -0.4313965 -0.5435066 0.2052002 0.6530762 -0.4305649 0.0332031 0.5100098 -1.1314125 0.6002197 0.1989746 1.7295837 0.5404053 0.0275879 1.5299416 0.4521484 -0.1354980 2.1616707 0.1335449 -0.2761230 2.0355148 -0.1265869 -0.3596191 1.5944939 0.3515625 -0.3261719 1.1031761 -0.2963867 0.3706055 -1.9945412 -0.5933838 0.0986328 -1.9864616 0.6994629 0.2084961 2.7426376 0.6635742 0.5212402 2.5530701 -0.3510742 -0.9667969 -2.5047760 -0.5224609 0.1730957 -1.3183174 0.6169434 -0.2846680 -0.5292473 0.6342773 -0.7551270 -3.0707207 0.1030273 -0.9387207 -2.5140915 0.2125244 -0.1879883 2.8475914 0.5115967 -0.3022461 2.4540062 -0.4276123 -0.2817383 1.5640678 -0.4060059 -0.2421875 1.3208847 0.0321045 -0.9929199 -2.9726067 -0.2854004 0.6276855 -3.0978127 } } phBound { Type BoundBVH AABBMin 1223.5600586 2594.6542969 38.5441704 AABBMax 1226.8519287 2601.0537109 81.0022354 Radius 21.5318 Centroid 1225.2060547 2597.8540039 59.7732010 CG 1225.1756592 2596.8706055 44.6970596 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 4 { Capsule 0 { MaterialIndex 0 CenterTop 5 CenterBottom 6 Radius 0.373899 } Capsule 1 { MaterialIndex 0 CenterTop 3 CenterBottom 4 Radius 0.373899 } Sphere 2 { MaterialIndex 0 Center 2 Radius 1.14024 } Capsule 3 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.872754 } } ComputePolyNeighbors True Vertices 7 { 1224.5190430 2600.0178223 80.0442123 1224.9099121 2595.8815918 39.9295120 1224.8823242 2595.7944336 39.6844101 1226.3940430 2596.0112305 39.5880508 1225.9111328 2595.9995117 39.7005844 1224.4299316 2596.4130859 39.5453720 1224.3239746 2596.8706055 39.3940430 } } phBound { Type BoundBVH AABBMin 1248.5223389 2657.2041016 35.9506683 AABBMax 1253.4056396 2660.2900391 87.7845612 Radius 26.0774 Centroid 1250.9639893 2658.7470703 61.8676147 CG 1250.9239502 2658.6652832 61.8670731 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.906868 } } ComputePolyNeighbors True Vertices 2 { 1249.7026367 2658.3537598 86.8310242 1252.2253418 2659.1403809 36.9042015 } } phBound { Type BoundBVH AABBMin 1250.0426025 2656.7993164 36.0450516 AABBMax 1254.1605225 2661.5571289 45.8519936 Radius 5.82602 Centroid 1252.1015625 2659.1782227 40.9485245 CG 887.2857666 1883.7899170 23.5383644 Margin 0.005 GeometryCenter 1252.1015625 2659.1782227 40.9485245 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -0.0939941 -1.0541992 4.8593483 0.6483154 -0.6765137 0.3321877 0.5473633 -0.4143066 4.9016647 0.8693848 -0.2087402 0.3293266 0.1630859 -0.8537598 0.2606583 -0.6866455 -0.8088379 0.1054077 -0.2498779 -1.0798340 0.2019310 -0.9685059 -0.8176270 4.8189926 -0.9383545 -0.3862305 0.0207787 -1.2017822 0.0588379 4.8209496 -1.0220947 0.0700684 -0.0338821 -0.5604248 0.6984863 4.8632660 -0.6882324 0.5261230 -0.0126495 -1.4569092 -1.8276367 -4.9034729 -0.9375000 -2.0156250 -4.8802834 -1.2363281 -1.2490234 -4.2600250 -0.8250732 -1.4541016 -4.2425613 -1.0522461 -0.7900391 -2.9651527 -0.6966553 -1.0534668 -2.9514503 -1.4704590 0.8984375 -4.8616104 -2.0589600 0.7087402 -4.8942871 -1.0695801 0.7231445 -4.2210274 -1.5671387 0.5742188 -4.1366997 -0.6925049 1.3532715 -4.8153839 -1.1452637 1.3422852 -4.8384209 -0.5705566 1.0949707 -4.1900063 -1.0577393 1.1713867 -4.2133446 1.1020508 1.6232910 -4.3113747 1.4694824 2.3789063 -4.6906967 1.8530273 1.3928223 -4.6867828 1.5490723 0.9865723 -4.2244873 2.0589600 -0.2976074 -4.7027435 1.6801758 -0.2861328 -4.0983009 0.8088379 -0.6042480 -2.8686295 0.8151855 -0.8740234 -2.8725433 1.2301025 -0.7490234 -4.1281128 1.3395996 -1.1977539 -4.1296196 1.7303467 -1.3347168 -4.7354202 1.6127930 -0.8950195 -4.7345200 -0.8260498 1.0712891 -2.9247971 -0.6605225 0.5200195 -2.9250984 -0.4359131 0.8251953 0.0073776 -1.6408691 -0.2871094 -4.8887177 -1.2548828 -0.5046387 -4.8727531 -1.3598633 -0.1608887 -4.2493362 -1.0334473 -0.5017090 -4.2381897 -1.1356201 -0.1208496 -2.9589806 -1.0970459 -0.4309082 -2.9618416 0.3142090 0.4619141 4.9034691 0.0615234 0.8894043 0.0909500 0.7006836 0.5100098 0.2347603 -0.3547363 -0.8559570 -2.9311218 -0.9637451 0.3669434 -2.9427185 -0.2987061 1.0327148 -2.8988953 0.8223877 0.9782715 -2.9166641 1.0522461 0.4746094 -2.9129028 1.1477051 -0.3032227 -2.8469467 0.3441162 -1.6464844 -4.1866913 0.2604980 -1.3149414 -2.9073296 -0.3664551 -1.3286133 -4.2175598 0.5761719 -2.3789063 -4.8098106 -0.3645020 -1.5937500 -4.8448944 } } phBound { Type BoundBVH AABBMin 1250.0427246 2656.7993164 36.0449715 AABBMax 1253.9963379 2661.5568848 41.2778816 Radius 4.0512 Centroid 1252.0195313 2659.1782227 38.6614265 CG 921.5166016 1956.8841553 27.9149532 Margin 0.005 GeometryCenter 1252.0195313 2659.1782227 38.6614265 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { 0.4262695 -1.6464844 -1.8997650 -1.1541748 -1.2490234 -1.9731369 0.6582031 -2.3789063 -2.5227432 -1.3747559 -1.8278809 -2.6164551 -0.3862305 -0.9443359 2.4408150 -0.8980713 -0.1582031 2.2804298 -1.0021973 -0.5332031 -0.6758461 -1.4851074 0.5739746 -1.8496399 -0.9742432 1.1523438 -1.9266434 -1.9768066 0.7084961 -2.6072540 -1.0632324 1.3420410 -2.5513954 1.5516357 2.3786621 -2.4036827 1.1293945 1.4912109 -1.9528770 1.9351807 1.3928223 -2.3997269 1.5290527 0.9436035 -1.9432716 1.9768066 -0.8161621 -2.4320145 1.5257568 -0.7316895 -1.8301849 -1.1145020 -0.3315430 -1.9568329 -1.3657227 -0.3959961 -2.5936928 -0.4798584 0.6755371 2.2843018 0.4752197 0.7163086 2.2893867 0.9514160 -0.2089844 2.6164551 0.4877930 -0.7651367 2.5835228 } } phBound { Type BoundBVH AABBMin 1191.8554688 2623.2250977 38.2854004 AABBMax 1193.7177734 2624.8884277 44.0766563 Radius 3.15331 Centroid 1192.7866211 2624.0566406 41.1810303 CG 874.4306030 1921.4091797 33.6856956 Margin 0.005 GeometryCenter 1192.7866211 2624.0566406 41.1810303 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 117 { Tri 0 { Vertices 61 62 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 61 11 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 58 18 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 62 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 17 18 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 58 44 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 44 58 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 62 43 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 43 62 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 10 62 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 4 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 11 61 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 17 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 17 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 55 28 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 28 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 68 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 28 54 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 28 27 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 27 36 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 29 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 27 29 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 32 37 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 36 29 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 37 31 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 32 31 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 43 10 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 44 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 59 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 55 17 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 54 55 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 54 59 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 47 29 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 47 26 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 4 3 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 4 11 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 31 60 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 22 60 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 30 22 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 32 29 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 47 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 45 8 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 44 6 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 43 6 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 3 6 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 5 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 60 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 60 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 8 7 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 47 59 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 7 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 46 23 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 23 30 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 46 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 22 30 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 6 5 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 66 5 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 66 45 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 52 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 66 1 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 8 45 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 38 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 38 8 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 20 9 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 20 19 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 65 1 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 60 53 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 25 53 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 53 25 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 53 52 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 48 49 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 52 53 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 50 51 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 24 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 24 46 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 7 14 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 9 14 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 40 24 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 25 24 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 40 48 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 14 9 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 2 1 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 2 65 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 41 2 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 65 52 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 51 42 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 51 64 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 63 42 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 0 39 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 38 1 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 38 39 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 39 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 12 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 19 12 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 12 13 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 50 48 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 51 50 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 56 35 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 35 64 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 64 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 34 63 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 35 56 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 48 50 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 40 56 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 56 40 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 13 57 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 40 14 13 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 69 { -0.3385010 -0.0788574 2.5891495 -0.4929199 -0.1635742 1.5040054 -0.2653809 -0.2170410 2.4763184 0.0523682 -0.7556152 -0.7664642 0.5349121 -0.6110840 -1.4385757 0.1158447 -0.6933594 0.3394585 -0.3270264 -0.6791992 -0.3078957 -0.0526123 0.6105957 0.0586243 -0.5300293 0.0830078 -0.3290291 0.0238037 0.5693359 0.7478027 0.2326660 -0.8115234 -1.6649399 0.3413086 -0.6706543 -2.3616371 0.4425049 0.5393066 2.3728638 0.6444092 0.4443359 2.5579338 0.5322266 0.5424805 1.5969391 -0.9311523 0.1906738 -2.6900444 -0.8127441 -0.2426758 -2.7434502 -0.7039795 -0.3640137 -1.8514290 -0.5858154 -0.6040039 -2.6195679 0.0035400 0.6203613 1.5842056 -0.3187256 0.4113770 1.7339096 -0.0178223 0.5871582 2.8697205 0.8159180 0.1057129 -0.3447685 0.6253662 0.5285645 -0.3575020 0.7248535 0.2116699 0.0841789 0.7242432 -0.1687012 0.2895012 0.0291748 0.5637207 -1.8544350 0.1737061 0.5429688 -2.2670212 -0.4294434 0.5026855 -2.1934509 0.5076904 0.3645020 -1.8227768 0.6849365 0.0646973 -0.9991951 0.6126709 -0.3408203 -2.0735512 0.6945801 -0.0041504 -1.8204803 0.8126221 -0.2507324 2.6740341 0.7236328 -0.4116211 2.4612885 0.7844238 -0.4746094 2.2648087 0.8376465 0.4038086 -2.7177200 0.9084473 0.1462402 -2.6723595 -0.4517822 0.1140137 1.4408722 -0.2993164 0.2573242 2.7300072 0.7049561 0.2819824 1.3743782 -0.2377930 -0.1816406 2.8956261 0.1237793 -0.5737305 2.6176224 -0.1436768 -0.7653809 -0.9815102 -0.3936768 -0.7338867 -1.2261810 -0.5075684 -0.5009766 -0.5067596 0.2788086 0.6093750 -0.3460922 0.0803223 0.5290527 -0.9977798 0.7874756 -0.0476074 1.6002998 0.7247314 -0.2021484 1.4053230 0.6691895 -0.4328613 1.9782257 0.3477783 -0.5742188 1.8606224 0.0695801 -0.6240234 1.4554596 0.5288086 -0.5222168 0.9913216 -0.2843018 0.4624023 -1.7941284 -0.5732422 0.1767578 -1.7981949 0.9311523 -0.1357422 2.5319366 0.8752441 0.1958008 2.3811760 -0.3128662 -0.8315430 -2.3613701 -0.4754639 0.1872559 -1.1789627 0.7237549 -0.3061523 -0.5179024 0.6477051 -0.5229492 -2.8956299 0.1433105 -0.7844238 -2.3809128 0.4595947 -0.5639648 2.6134644 0.7478027 -0.6271973 2.2336807 -0.2379150 -0.5546875 1.4417572 -0.2281494 -0.4897461 1.2198982 0.0539551 -0.7956543 -2.8055267 -0.3306885 0.8317871 -2.7925262 } } phBound { Type BoundBVH AABBMin 1191.6203613 2622.8872070 37.0486832 AABBMax 1194.9941406 2625.6569824 76.6308212 Radius 19.9111 Centroid 1193.3072510 2624.2719727 56.8397522 CG 1193.1292725 2624.1953125 42.8736458 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 4 { Capsule 0 { MaterialIndex 0 CenterTop 5 CenterBottom 6 Radius 0.377257 } Capsule 1 { MaterialIndex 0 CenterTop 3 CenterBottom 4 Radius 0.377257 } Sphere 2 { MaterialIndex 0 Center 2 Radius 1.15048 } Capsule 3 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.880592 } } ComputePolyNeighbors True Vertices 7 { 1194.0064697 2624.2155762 75.7222290 1192.8060303 2624.1018066 38.4304886 1192.7708740 2624.0375977 38.1991615 1194.2821045 2624.3254395 38.0825806 1193.8006592 2624.2829590 38.1991577 1192.2864990 2624.6550293 38.1296997 1192.1563721 2625.1252441 38.0264130 } } phBound { Type BoundBVH AABBMin 1204.1218262 2589.0810547 39.6649590 AABBMax 1207.5942383 2595.3330078 111.2669525 Radius 35.9791 Centroid 1205.8580322 2592.2070313 75.4659576 CG 1205.9190674 2592.2602539 75.4695892 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.2526 } } ComputePolyNeighbors True Vertices 2 { 1205.5787354 2593.8286133 109.9560852 1206.1373291 2590.5854492 40.9758301 } } phBound { Type BoundBVH AABBMin 1202.9346924 2587.5583496 39.7875671 AABBMax 1208.5958252 2593.5751953 53.3386726 Radius 7.93542 Centroid 1205.7652588 2590.5668945 46.5631180 CG 930.3071289 1997.9779053 29.1111145 Margin 0.005 GeometryCenter 1205.7652588 2590.5668945 46.5631180 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -0.9667969 0.7807617 6.6989059 -0.8088379 -0.3322754 0.4408607 -0.5075684 -0.3833008 6.7570190 -0.3369141 -0.8686523 0.4406509 -0.7663574 0.3806152 0.3467102 -0.2410889 1.4345703 0.1454964 -0.8256836 1.0285645 0.2686005 -0.1870117 1.7604980 6.6593285 0.4342041 1.5227051 0.0382233 1.0520020 1.5759277 6.6778641 1.0596924 1.3793945 -0.0294724 1.5108643 0.4118652 6.7359810 1.4545898 0.7060547 0.0013580 -1.0163574 3.0083008 -6.7755508 -1.5397949 2.4523926 -6.7536812 -0.4155273 2.4064941 -5.8819618 -0.9012451 1.9973145 -5.8667564 0.0411377 1.9116211 -4.0897827 -0.4880371 1.6049805 -4.0795784 2.4464111 1.5314941 -6.6786919 2.5289307 2.3818359 -6.7178535 1.9925537 1.1142578 -5.8021851 2.0748291 1.8261719 -5.6807480 2.5960693 0.2954102 -6.6197433 2.8305664 0.8757324 -6.6449509 2.1899414 0.2775879 -5.7615662 2.5544434 0.8535156 -5.7855186 1.9461670 -2.1315918 -5.9459076 2.7098389 -3.0085449 -6.4643555 1.2496338 -2.9548340 -6.4785233 0.8922119 -2.3500977 -5.8415527 -1.0062256 -2.2893066 -6.5276794 -0.7954102 -1.8203125 -5.6874123 -0.7446289 -0.5507813 -3.9808464 -1.0900879 -0.4108887 -3.9902191 -1.1351318 -0.9956055 -5.7286568 -1.7641602 -0.8886719 -5.7386551 -2.1405029 -1.3041992 -6.5828781 -1.5185547 -1.3959961 -6.5737114 2.2760010 0.6047363 -4.0106316 1.4864502 0.6967773 -4.0212555 1.6950684 0.2221680 0.0296860 1.0373535 2.3972168 -6.7305603 0.5498047 2.0268555 -6.7170181 1.0312500 1.9667969 -5.8496780 0.4201660 1.7395020 -5.8440514 0.9349365 1.6506348 -4.0704117 0.5207520 1.7714844 -4.0793686 0.7312012 -0.5676270 6.7755547 1.5024414 -0.4443359 0.1386223 0.6684570 -1.0478516 0.3227577 -0.4252930 1.0629883 -4.0537491 1.4589844 1.1652832 -4.0435410 1.9377441 -0.0429688 -3.9831352 1.2552490 -1.4345703 -4.0247955 0.4904785 -1.4499512 -4.0302124 -0.5491943 -1.1455078 -3.9514771 -1.7867432 0.6198730 -5.8094749 -1.3447266 0.5344238 -4.0364609 -0.9936523 1.3469238 -5.8369675 -2.8305664 0.7316895 -6.6836929 -1.3189697 1.4946289 -6.7072296 } } phBound { Type BoundBVH AABBMin 1202.9354248 2587.5590820 39.7874565 AABBMax 1208.5965576 2593.5756836 47.0035744 Radius 5.48453 Centroid 1205.7659912 2590.5673828 43.3955154 CG 932.8531494 2003.1729736 26.6321316 Margin 0.005 GeometryCenter 1205.7659912 2590.5673828 43.3955154 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { -1.7867432 0.6198730 -2.6419525 -0.4156494 2.4064941 -2.7144966 -2.8305664 0.7319336 -3.5161781 -1.0164795 3.0083008 -3.6080589 -0.5333252 1.2316895 3.3746643 0.7467041 1.4511719 3.1717873 0.3842773 1.8115234 -0.9149666 2.0745850 1.8264160 -2.5130692 2.5291748 0.8623047 -2.6187019 2.5288086 2.3820801 -3.5503807 2.8305664 0.8759766 -3.4775009 2.7095947 -3.0083008 -3.2968674 1.8072510 -1.9902344 -2.6808510 1.2495117 -2.9545898 -3.3110619 0.8940430 -2.1972656 -2.6811867 -1.5733643 -1.7966309 -3.3878555 -1.2305908 -1.2758789 -2.5488396 0.7255859 1.8532715 -2.6795120 0.7934570 2.2121582 -3.5563049 1.5747070 0.4641113 3.1828537 1.1030273 -0.7692871 3.1767044 -0.3371582 -0.8686523 3.6080589 -0.7877197 0.0244141 3.5614471 } } phBound { Type BoundBVH AABBMin 1254.1733398 2620.3549805 36.0882759 AABBMax 1261.1926270 2627.7651367 120.7162933 Radius 42.6207 Centroid 1257.6829834 2624.0600586 78.4022827 CG 1257.7006836 2624.1203613 78.4012604 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.48053 } } ComputePolyNeighbors True Vertices 2 { 1259.0546875 2622.4995117 119.1623077 1256.3112793 2625.6206055 37.6422577 } } phBound { Type BoundBVH AABBMin 1252.1834717 2621.9545898 36.2230072 AABBMax 1260.0417480 2628.7934570 52.2582169 Radius 9.561 Centroid 1256.1125488 2625.3740234 44.2406120 CG 340.1158752 712.4666748 -3.1061888 Margin 0.005 GeometryCenter 1256.1125488 2625.3740234 44.2406120 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { 2.0825195 0.1877441 7.9157257 1.2653809 1.2644043 0.5230751 0.9554443 1.1447754 7.9899750 0.4747314 1.5605469 0.5262833 1.6181641 0.4978027 0.4098511 1.6569824 -0.8930664 0.1708221 2.0405273 -0.1442871 0.3151283 1.8156738 -1.2678223 7.8691025 1.0017090 -1.3615723 0.0464973 0.4215088 -1.7663574 7.8969803 0.2696533 -1.5607910 -0.0304642 -0.7053223 -0.8088379 7.9709816 -0.5170898 -1.0791016 0.0099907 3.3067627 -2.0961914 -8.0176048 3.5424805 -1.2250977 -7.9921989 2.3496094 -1.8044434 -6.9571419 2.6280518 -1.1074219 -6.9398727 1.6071777 -1.5446777 -4.8352318 1.9875488 -0.9301758 -4.8246231 -1.1251221 -2.4873047 -7.8841515 -0.7371826 -3.4194336 -7.9327469 -0.8802490 -1.8000488 -6.8488503 -0.5683594 -2.5878906 -6.7070122 -1.9697266 -1.2824707 -7.8101501 -1.8908691 -2.0178223 -7.8407364 -1.5520020 -1.0380859 -6.7972946 -1.6109619 -1.8415527 -6.8259087 -2.6417236 1.6091309 -7.0089455 -3.9290771 2.0979004 -7.6157684 -2.3773193 2.8557129 -7.6387100 -1.6645508 2.4243164 -6.8890610 0.3446045 3.4194336 -7.7082710 0.3907471 2.8125000 -6.7156448 1.0541992 1.4597168 -4.7022705 1.4920654 1.5065918 -4.7150993 1.2041016 2.1425781 -6.7684364 1.9194336 2.3815918 -6.7832375 2.0756836 3.0251465 -7.7812881 1.3762207 2.7741699 -7.7674751 -1.4504395 -1.4282227 -4.7284203 -0.5760498 -1.0842285 -4.7447014 -1.0374756 -0.7087402 0.0457573 0.8259277 -2.6042480 -7.9539604 1.1276855 -1.9465332 -7.9389153 0.5969238 -2.1528320 -6.9117546 1.1070557 -1.5751953 -6.9068184 0.5300293 -1.7707520 -4.8078499 1.0291748 -1.6657715 -4.8204308 -0.4384766 0.6467285 8.0176048 -1.2075195 0.0932617 0.1760025 -0.6737061 1.1870117 0.3918457 1.6203613 -0.4001465 -4.7920609 -0.2864990 -1.5568848 -4.7723274 -1.4586182 -0.5646973 -4.6953659 -1.5231934 1.2663574 -4.7432213 -0.7347412 1.7084961 -4.7525940 0.5190430 1.9707031 -4.6650238 2.7833252 0.8217773 -6.8715439 2.2840576 0.6633301 -4.7738075 2.3619385 -0.3779297 -6.9031219 3.9291992 1.2875977 -7.9095612 2.7789307 -0.3498535 -7.9334869 } } phBound { Type BoundBVH AABBMin 1252.1833496 2621.9541016 36.2228851 AABBMax 1260.0415039 2628.5959473 44.7668648 Radius 6.68701 Centroid 1256.1124268 2625.2749023 40.4948730 CG 985.1482544 2058.2668457 36.0811958 Margin 0.005 GeometryCenter 1256.1124268 2625.2749023 40.4948730 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { 2.7830811 0.9204102 -3.1258965 2.3494873 -1.7058105 -3.2114334 3.9290771 1.3864746 -4.1639023 3.3066406 -1.9973145 -4.2719879 1.8486328 -0.4201660 3.9887161 0.6356201 -1.3623047 3.7537155 1.1934814 -1.5327148 -1.0793190 -0.5684814 -2.4892578 -2.9613152 -1.5799561 -1.7377930 -3.0812035 -0.7373047 -3.3208008 -4.1871109 -1.8909912 -1.9191895 -4.0950737 -3.9290771 2.1965332 -3.8701515 -2.4178467 1.6379395 -3.1488380 -2.3773193 2.9543457 -3.8930969 -1.5814209 2.3625488 -3.1524200 1.2099609 3.3210449 -3.9991913 1.1472168 2.5864258 -3.0077324 0.8519287 -1.7653809 -3.1636925 0.9766846 -2.1765137 -4.2009048 -0.7773438 -0.7951660 3.7733421 -0.9731445 0.7534180 3.7677727 0.4746094 1.6591797 4.2719917 1.4417725 0.9799805 4.2123108 } } phBound { Type BoundBVH AABBMin 1216.2448730 2644.0004883 35.8664398 AABBMax 1225.1750488 2653.3696289 133.9170380 Radius 49.4506 Centroid 1220.7099609 2648.6850586 84.8917389 CG 1220.7368164 2648.6469727 84.8917847 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.71579 } } ComputePolyNeighbors True Vertices 2 { 1218.7375488 2650.8696289 132.0978088 1222.6823730 2646.5004883 37.6856728 } } phBound { Type BoundBVH AABBMin 1218.3120117 2642.8322754 35.9870872 AABBMax 1227.3424072 2650.6669922 54.6329384 Radius 11.0747 Centroid 1222.8271484 2646.7495117 45.3100128 CG 964.5524902 2087.2519531 26.7287731 Margin 0.005 GeometryCenter 1222.8271484 2646.7495117 45.3100128 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -2.4943848 0.0507813 9.1705704 -1.5343018 -1.3032227 0.6207809 -1.2579346 -1.1342773 9.2766418 -0.6402588 -1.7004395 0.6363029 -1.8876953 -0.3925781 0.4802094 -1.8332520 1.2175293 0.1941833 -2.3308105 0.3789063 0.3611984 -2.0841064 1.7155762 9.1107750 -1.0415039 1.7131348 0.0553360 -0.4372559 2.1958008 9.1573448 -0.1796875 1.8920898 -0.0260162 0.7989502 1.0104980 9.2631340 0.6964111 1.2807617 0.0337753 -3.5589600 2.6662598 -9.3229256 -3.8923340 1.6752930 -9.2910156 -2.4848633 2.2700195 -8.0802116 -2.8555908 1.4829102 -8.0592270 -1.6697998 1.9326172 -5.6105995 -2.1527100 1.2482910 -5.5991020 1.5931396 2.8125000 -9.1153755 1.2097168 3.9174805 -9.1820679 1.2495117 2.0415039 -7.9143448 0.9418945 2.9755859 -7.7588272 2.4855957 1.3608398 -9.0113144 2.4459229 2.2167969 -9.0524216 1.9731445 1.1140137 -7.8413315 2.0975342 2.0390625 -7.8787003 3.0526123 -2.0253906 -8.0563545 4.5152588 -2.6840820 -8.7405243 2.6678467 -3.4533691 -8.7819176 1.8641357 -2.8996582 -7.9249840 -0.5190430 -3.9172363 -8.8931656 -0.5421143 -3.2050781 -7.7470398 -1.2402344 -1.5800781 -5.4306488 -1.7498779 -1.6040039 -5.4507713 -1.4359131 -2.3740234 -7.8223572 -2.2797852 -2.6010742 -7.8470802 -2.4931641 -3.3415527 -9.0018272 -1.6669922 -3.0996094 -8.9785423 1.8576660 1.5866699 -5.4478951 0.8226318 1.2492676 -5.4752045 1.2720947 0.8164063 0.0840836 -0.6545410 3.0825195 -9.2211609 -1.0496826 2.3425293 -9.2036285 -0.4337158 2.5517578 -8.0077744 -1.0642090 1.9191895 -8.0048981 -0.4084473 2.1198730 -5.5666199 -0.9930420 2.0329590 -5.5870285 0.3886719 -0.6545410 9.3229256 1.4116211 -0.1220703 0.2419014 0.7158203 -1.3488770 0.4922829 -1.7652588 0.6101074 -5.5533943 0.5208740 1.8164063 -5.5140114 1.8068848 0.5876465 -5.4039154 1.7551270 -1.5354004 -5.4470329 0.8125000 -1.9924316 -5.4651451 -0.6572266 -2.2080078 -5.3774681 -3.1699219 -0.7375488 -7.9701157 -2.6068115 -0.5739746 -5.5338478 -2.5987549 0.6208496 -8.0089226 -4.5151367 -1.2041016 -9.1843681 -3.0705566 0.6101074 -9.2079391 } } phBound { Type BoundBVH AABBMin 1218.3112793 2643.1203613 35.9869423 AABBMax 1227.3415527 2650.6674805 45.9461746 Radius 7.70862 Centroid 1222.8264160 2646.8940430 40.9665604 CG 1063.3193359 2297.9011230 4.0034213 Margin 0.005 GeometryCenter 1222.8264160 2646.8940430 40.9665604 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { -3.1699219 -0.8813477 -3.6268806 -2.4848633 2.1259766 -3.7368889 -4.5151367 -1.3483887 -4.8410187 -3.5589600 2.5224609 -4.9796181 -2.0820313 0.6542969 4.6211548 -0.6105957 1.6584473 4.3580933 -1.1854248 1.8605957 -1.2504997 0.9418945 2.8317871 -3.4152527 2.0614014 1.8916016 -3.5369148 1.2098389 3.7734375 -4.8388443 2.4458008 2.0727539 -4.7091026 4.5151367 -2.8281250 -4.3972549 2.7969971 -2.0720215 -3.5838394 2.6678467 -3.5974121 -4.4385834 1.7792969 -2.8522949 -3.5939407 -1.5059814 -3.7736816 -4.6040649 -1.3945313 -2.9213867 -3.4589157 -0.7490234 2.0915527 -3.6630859 -0.8521729 2.5683594 -4.8691444 0.9842529 0.9045410 4.4020653 1.1035156 -0.9003906 4.4076614 -0.6403809 -1.8444824 4.9796143 -1.7110596 -0.9919434 4.8940010 } } phBound { Type BoundBVH AABBMin 1230.4862061 2614.5544434 37.4549179 AABBMax 1236.7657471 2617.1735840 109.9091568 Radius 36.3865 Centroid 1233.6259766 2615.8640137 73.6820374 CG 1233.6551514 2615.9140625 73.6799088 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.26757 } } ComputePolyNeighbors True Vertices 2 { 1235.4178467 2615.8398438 108.5782471 1231.8341064 2615.8881836 38.7858276 } } phBound { Type BoundBVH AABBMin 1228.1236572 2612.9843750 37.5665932 AABBMax 1235.1568604 2618.7321777 51.3002243 Radius 8.2328 Centroid 1231.6402588 2615.8583984 44.4334106 CG 962.9274292 2045.2722168 27.9889030 Margin 0.005 GeometryCenter 1231.6402588 2615.8583984 44.4334106 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { 1.4555664 1.1250000 6.7710457 0.3177490 1.3244629 0.4415054 0.1895752 1.1130371 6.8357353 -0.3598633 1.0727539 0.4463692 0.9757080 1.0253906 0.3457413 1.7805176 0.1457520 0.1459694 1.6091309 0.8461914 0.2654114 2.0987549 0.0332031 6.7376480 1.6190186 -0.5251465 0.0438614 1.4761963 -1.0705566 6.7685089 1.2569580 -1.0649414 -0.0182877 0.2102051 -1.0822754 6.8331985 0.4777832 -1.1940918 0.0176506 3.5166016 0.2487793 -6.8668175 3.1807861 0.9448242 -6.8492737 2.7344971 -0.0932617 -5.9561043 2.5238037 0.5139160 -5.9449005 2.1098633 -0.3303223 -4.1374283 2.0115967 0.2807617 -4.1319313 0.8681641 -2.4880371 -6.7334251 1.6416016 -2.8740234 -6.7731667 0.6419678 -1.9003906 -5.8504028 1.2856445 -2.2348633 -5.7273712 -0.3537598 -2.1816406 -6.6708488 0.1094971 -2.6132813 -6.6947365 -0.2197266 -1.7836914 -5.8062210 0.1925049 -2.3369141 -5.8275719 -2.4090576 -0.6828613 -5.9924660 -3.5166016 -1.0915527 -6.5084953 -2.9372559 0.2685547 -6.5372467 -2.2336426 0.3930664 -5.8967018 -1.4920654 2.1589355 -6.6097565 -1.1212158 1.7973633 -5.7578125 0.0678711 1.3044434 -4.0319366 0.3249512 1.5803223 -4.0450439 -0.2193604 1.8195801 -5.8038940 0.1094971 2.3750000 -5.8201752 -0.1508789 2.8737793 -6.6778259 -0.4627686 2.3193359 -6.6621819 0.0662842 -1.9682617 -4.0340500 0.4390869 -1.2556152 -4.0526543 -0.0665283 -1.2458496 0.0491486 2.1961670 -1.4704590 -6.8004379 2.0227051 -0.8754883 -6.7913475 1.7955322 -1.3010254 -5.9089622 1.8020020 -0.6413574 -5.9087524 1.5396729 -1.0800781 -4.1088867 1.8039551 -0.7326660 -4.1219940 -0.4329834 0.0095215 6.8668137 -0.6259766 -0.8217773 0.1584396 -0.8936768 0.1865234 0.3370743 1.4769287 0.4179688 -4.1046600 0.8914795 -1.3994141 -4.0759087 -0.4232178 -1.4140625 -4.0086823 -1.4914551 -0.2656250 -4.0558243 -1.2291260 0.4624023 -4.0687218 -0.5646973 1.3354492 -3.9995956 1.5428467 1.8496094 -5.8937416 1.3101807 1.4782715 -4.0953598 1.9427490 0.8369141 -5.9148827 2.0224609 2.7878418 -6.7888107 2.1960449 1.0832520 -6.7987442 } } phBound { Type BoundBVH AABBMin 1228.1240234 2612.9838867 37.5664787 AABBMax 1235.1569824 2618.6459961 44.8797836 Radius 5.80961 Centroid 1231.6405029 2615.8149414 41.2231293 CG 937.9146118 1991.7186279 30.8794613 Margin 0.005 GeometryCenter 1231.6405029 2615.8149414 41.2231293 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { 1.5428467 1.8925781 -2.6836891 2.7344971 -0.0502930 -2.7459145 2.0223389 2.8310547 -3.5786133 3.5164795 0.2917480 -3.6566505 1.6948242 0.5390625 3.4159431 1.4379883 -0.7519531 3.2229004 1.8909912 -0.5751953 -0.9163666 1.2857666 -2.1918945 -2.5171509 0.2098389 -2.2734375 -2.6183929 1.6417236 -2.8310547 -3.5630264 0.1096191 -2.5705566 -3.4845352 -3.5164795 -1.0485840 -3.2983170 -2.2248535 -0.5588379 -2.6849403 -2.9371338 0.3115234 -3.3269844 -2.0898438 0.3789063 -2.6939278 -0.8215332 2.5593262 -3.4335747 -0.4497070 2.0541992 -2.5818787 1.7988281 -0.9282227 -2.6987038 2.1092529 -1.1298828 -3.5857811 0.2056885 -1.1770020 3.2433739 -0.7891846 -0.2846680 3.2339325 -0.3598633 1.1157227 3.6566544 0.6468506 1.2180176 3.6039848 } } phBound { Type BoundBVH AABBMin 1269.2238770 2606.0585938 36.0351601 AABBMax 1275.7780762 2609.8076172 114.9221802 Radius 39.6238 Centroid 1272.5009766 2607.9331055 75.4786682 CG 1272.4583740 2607.8869629 75.4761810 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.37999 } } ComputePolyNeighbors True Vertices 2 { 1270.8719482 2608.2077637 113.4835587 1274.1300049 2607.6584473 37.4737778 } } phBound { Type BoundBVH AABBMin 1270.5372314 2604.5598145 36.1738930 AABBMax 1278.3309326 2611.0920410 51.0917091 Radius 9.02708 Centroid 1274.4340820 2607.8259277 43.6328011 CG 1333.9025879 2730.2138672 41.7806473 Margin 0.005 GeometryCenter 1274.4340820 2607.8259277 43.6328011 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.8083496 -1.0954590 7.3676186 -0.6953125 -1.5446777 0.4664345 -0.4598389 -1.3820801 7.4270248 0.0843506 -1.4372559 0.4666634 -1.3245850 -1.0708008 0.3687210 -1.9735107 0.0551758 0.1609077 -1.9559326 -0.7302246 0.2872925 -2.2341309 0.2170410 7.3400917 -1.6439209 0.7304688 0.0505791 -1.3112793 1.2426758 7.3719749 -1.1320801 1.2187500 -0.0186920 0.0372314 0.9558105 7.4313850 -0.2733154 1.1718750 0.0143356 -3.8968506 0.3911133 -7.4589081 -3.7043457 -0.4277344 -7.4449158 -2.9777832 0.5654297 -6.4730568 -2.8974609 -0.1298828 -6.4645691 -2.2440186 0.6604004 -4.4979172 -2.2839355 -0.0122070 -4.4947052 -0.4343262 2.6730957 -7.3277054 -1.1654053 3.2661133 -7.3630295 -0.3261719 1.9907227 -6.3702965 -0.9300537 2.4975586 -6.2296906 0.7921143 2.0581055 -7.2710495 0.4017334 2.6267090 -7.2916946 0.5622559 1.6628418 -6.3299294 0.2550049 2.3481445 -6.3480492 2.6273193 -0.0236816 -6.5551720 3.8968506 0.1516113 -7.1251678 2.9594727 -1.1569824 -7.1556740 2.1873779 -1.1259766 -6.4528732 0.9763184 -2.8237305 -7.2283859 0.6743164 -2.3559570 -6.2964401 -0.4595947 -1.5600586 -4.4059372 -0.7979736 -1.7922363 -4.4185524 -0.2896729 -2.1662598 -6.3388748 -0.7707520 -2.6787109 -6.3558464 -0.6184082 -3.2661133 -7.2930717 -0.1558838 -2.7507324 -7.2770119 0.3157959 1.9177246 -4.3976784 -0.2490234 1.2485352 -4.4169464 0.3176270 1.0981445 0.0439262 -2.0866699 1.9057617 -7.3926201 -2.0428467 1.2324219 -7.3859673 -1.6942139 1.6267090 -6.4258041 -1.8569336 0.9272461 -6.4278717 -1.4604492 1.3225098 -4.4692421 -1.8236084 1.0156250 -4.4825478 0.4631348 -0.3566895 7.4589081 0.8126221 0.5146484 0.1567764 0.8602295 -0.6210938 0.3460121 -1.7480469 -0.2844238 -4.4699326 -0.6959229 1.5083008 -4.4378166 0.7050781 1.2128906 -4.3761177 1.5684814 -0.2597656 -4.4403419 1.1175537 -0.9716797 -4.4545631 0.2055664 -1.7424316 -4.3763466 -2.1702881 -1.7812500 -6.4219055 -1.8212891 -1.4509277 -4.4646568 -2.3558350 -0.6105957 -6.4381943 -2.9086914 -2.6608887 -7.3949127 -2.6901855 -0.8081055 -7.3988113 } } phBound { Type BoundBVH AABBMin 1270.5369873 2604.7807617 36.1737747 AABBMax 1278.3305664 2611.0917969 44.0992775 Radius 6.39106 Centroid 1274.4338379 2607.9362793 40.1365280 CG 921.2670898 1885.6835938 32.2483177 Margin 0.005 GeometryCenter 1274.4338379 2607.9362793 40.1365280 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { -2.1701660 -1.8920898 -2.9257431 -2.9777832 0.4548340 -2.9769249 -2.9085693 -2.7712402 -3.8987770 -3.8968506 0.2805176 -3.9627533 -1.9648438 -0.4479980 3.7203827 -1.3880615 0.8640137 3.5120926 -1.9432373 0.8039551 -0.9908752 -0.9302979 2.3869629 -2.7334518 0.2316895 2.2197266 -2.8527908 -1.1655273 3.1555176 -3.8669128 0.4016113 2.5161133 -3.7955589 3.8967285 0.0407715 -3.6289749 2.4130859 -0.1772461 -2.9517059 2.9594727 -1.2675781 -3.6596107 2.0479736 -1.1418457 -2.9633904 0.1789551 -3.1555176 -3.7645531 -0.0902100 -2.5351563 -2.8324890 -1.7756348 1.1662598 -2.9307899 -2.0648193 1.4584961 -3.8931198 0.0220947 1.0244141 3.5251350 0.8682861 -0.1589355 3.5034828 0.0843506 -1.5478516 3.9627495 -1.0100098 -1.4182129 3.9137840 } } phBound { Type BoundBVH AABBMin 1172.5784912 2604.7709961 38.7057419 AABBMax 1175.9896240 2610.6928711 109.2777786 Radius 35.4511 Centroid 1174.2840576 2607.7319336 73.9917603 CG 1174.2868652 2607.7009277 73.9906158 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.23454 } } ComputePolyNeighbors True Vertices 2 { 1174.5478516 2606.2558594 107.9900436 1174.0202637 2609.2080078 39.9934769 } } phBound { Type BoundBVH AABBMin 1170.8802490 2606.0424805 38.8396263 AABBMax 1176.7446289 2612.9782715 52.1710205 Radius 8.0657 Centroid 1173.8125000 2609.5102539 45.5053253 CG 805.7848511 1790.8902588 23.5166836 Margin 0.005 GeometryCenter 1173.8125000 2609.5102539 45.5053253 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { 1.1542969 -1.7214355 6.5721588 1.5177002 -0.7512207 0.3918915 1.5019531 -0.5375977 6.6203613 1.4746094 -0.0483398 0.3937378 1.0511475 -1.2802734 0.3123016 -0.0001221 -1.7832031 0.1449203 0.7034912 -1.8205566 0.2450218 -0.0452881 -2.0126953 6.5688744 -0.5821533 -1.4436035 0.0571251 -0.8974609 -1.1203613 6.6142082 -0.9843750 -0.9538574 0.0031776 -0.5496826 0.0632324 6.6626167 -0.8839111 -0.1911621 0.0316887 -0.5535889 -3.4677734 -6.6648788 0.1901855 -3.3515625 -6.6656990 -0.6309814 -2.6374512 -5.7803726 -0.0053711 -2.6125488 -5.7840652 -0.6339111 -1.9785156 -4.0121803 -0.0367432 -2.0595703 -4.0203857 -2.3531494 -0.2255859 -6.5108261 -2.9322510 -0.8376465 -6.5327759 -1.7218018 -0.1760254 -5.6655006 -2.2122803 -0.6809082 -5.5315514 -1.7211914 0.8271484 -6.4704170 -2.2550049 0.5170898 -6.4794426 -1.3687744 0.5944824 -5.6349373 -2.0009766 0.3664551 -5.6398582 0.2709961 2.3229980 -5.8640633 0.1909180 3.4680176 -6.3713417 1.2943115 2.5434570 -6.4199562 1.2260742 1.8562012 -5.7906265 2.6462402 0.6621094 -6.5116501 2.2237549 0.4233398 -5.6706276 1.4681396 -0.5366211 -3.9664383 1.6522217 -0.8542480 -3.9816132 1.9888916 -0.4238281 -5.7052956 2.4133301 -0.8874512 -5.7286797 2.9321289 -0.7902832 -6.5766754 2.5040283 -0.3427734 -6.5539055 -1.5811768 0.3896484 -3.9024353 -1.0229492 -0.1594238 -3.9305382 -0.7778320 0.3310547 0.0571251 -1.7813721 -1.7512207 -6.5811844 -1.1777344 -1.7575684 -6.5861092 -1.4902344 -1.4208984 -5.7210884 -0.8773193 -1.6132813 -5.7342186 -1.1712646 -1.2351074 -3.9758720 -0.9222412 -1.5795898 -3.9926910 0.6501465 0.3544922 6.6656952 -0.2221680 0.7331543 0.1484070 0.7968750 0.6987305 0.2989693 0.2426758 -1.5998535 -4.0027428 -1.2850342 -0.5407715 -3.9448967 -0.9260254 0.6892090 -3.8946419 0.4445801 1.3603516 -3.9762802 1.0488281 0.9101563 -4.0004883 1.6761475 0.0444336 -3.9430504 1.5174561 -2.0751953 -5.7729874 1.2779541 -1.7438965 -4.0171013 0.4604492 -2.1621094 -5.7682686 2.2362061 -2.7922363 -6.6576996 0.5985107 -2.4724121 -6.6310310 } } phBound { Type BoundBVH AABBMin 1170.8806152 2606.0419922 38.8403244 AABBMax 1176.6020508 2612.9780273 45.8989830 Radius 5.71551 Centroid 1173.7413330 2609.5100098 42.3696518 CG 839.1932983 1865.3457031 27.3778095 Margin 0.005 GeometryCenter 1173.7413330 2609.5100098 42.3696518 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { 1.5889893 -2.0751953 -2.6373978 -0.5594482 -2.6374512 -2.6447678 2.3076172 -2.7919922 -3.5220680 -0.4820557 -3.4680176 -3.5293274 0.4230957 -1.8017578 3.3307114 -0.7116699 -1.1987305 3.1657410 -0.7689209 -1.6931152 -0.8627815 -2.1407471 -0.6809082 -2.3958855 -1.9154053 0.3444824 -2.5054245 -2.8607178 -0.8376465 -3.3971329 -2.1835938 0.5170898 -3.3439026 0.2625732 3.4680176 -3.2357941 0.3679199 2.1291504 -2.6333313 1.3657227 2.5434570 -3.2842941 1.2036133 1.7382813 -2.6593933 2.8607178 -0.0639648 -3.4086800 2.3043213 -0.2631836 -2.5648117 -1.1123047 -1.5170898 -2.5920868 -1.4079590 -1.7543945 -3.4480515 -0.7593994 0.0700684 3.1798172 0.3526611 0.7451172 3.1409988 1.5461426 -0.0483398 3.5293312 1.3559570 -1.0158691 3.4877586 } } phBound { Type BoundBVH AABBMin 1167.7095947 2667.2824707 -518.9072876 AABBMax 1175.5012207 2673.8566895 -510.8039856 Radius 6.5114 Centroid 1171.6054688 2670.5695801 -514.8556519 CG 872.7205811 1989.5986328 -386.3767395 Margin 0.005 GeometryCenter 1171.6054688 2670.5695801 -514.8556519 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { -2.4477539 -1.6220703 -2.7903442 -2.8591309 0.8752441 -2.7864380 -3.4230957 -2.3713379 -3.7078857 -3.8958740 0.8654785 -3.7056274 -1.4104004 -0.2617188 3.9329224 -0.6267090 0.9602051 3.6619873 -1.5888672 1.0324707 -0.8624878 -0.4569092 2.4648438 -2.7321167 0.6673584 2.0991211 -2.9544678 -0.6606445 3.2871094 -3.8676758 0.8054199 2.3757324 -3.9291382 3.8957520 -0.7114258 -4.0516357 2.4326172 -0.6823730 -3.2316284 2.7307129 -1.8657227 -3.9916382 1.9007568 -1.5895996 -3.2050171 -0.3856201 -3.2871094 -3.8410645 -0.4670410 -2.6252441 -2.8746948 -1.5295410 1.3842773 -2.8500977 -1.8536377 1.7353516 -3.8040161 0.8137207 0.8798828 3.5500183 1.4566650 -0.4541016 3.4610291 0.4741211 -1.7197266 4.0058594 -0.6036377 -1.4018555 4.0516663 } } phBound { Type BoundBVH AABBMin 1236.3327637 2661.2089844 35.9928703 AABBMax 1242.6433105 2664.3969727 104.8163605 Radius 34.5928 Centroid 1239.4880371 2662.8029785 70.4046173 CG 1239.6171875 2662.9064941 70.4095764 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.20411 } } ComputePolyNeighbors True Vertices 2 { 1241.2287598 2663.0356445 103.5502319 1237.7473145 2662.5703125 37.2590027 } } phBound { Type BoundBVH AABBMin 1234.6466064 2659.9592285 36.0750084 AABBMax 1241.3125000 2665.6586914 49.1395874 Radius 7.86767 Centroid 1237.9794922 2662.8090820 42.6072998 CG 959.7868042 2064.7524414 26.5635605 Margin 0.005 GeometryCenter 1237.9794922 2662.8090820 42.6072998 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -0.5545654 -0.9018555 6.5312843 -0.2293701 -1.4072266 0.4488907 0.5629883 -1.3464355 6.4752350 0.4541016 -1.4291992 0.3848076 -0.7067871 -0.9069824 0.4117279 -1.1143799 0.1579590 0.2757225 -1.2041016 -0.5209961 0.3896294 -0.7292480 0.2895508 6.5322876 -0.7424316 0.6914063 0.1479568 0.2138672 1.0363770 6.4772453 -0.2382813 1.0366211 0.0424881 1.3314209 0.5917969 6.4213982 0.4929199 0.8703613 0.0017052 -3.3328857 0.7770996 -6.1899719 -3.2868652 0.0444336 -6.1873627 -2.4400635 0.7861328 -5.4095078 -2.4724121 0.1762695 -5.4034805 -1.6369629 0.7478027 -3.7539635 -1.7694092 0.1750488 -3.7431145 -0.0231934 2.2319336 -6.3745918 -0.5651855 2.8496094 -6.3502846 0.0476074 1.6230469 -5.5465164 -0.3839111 2.1464844 -5.3791733 0.9417725 1.5229492 -6.4205971 0.6889648 2.0693359 -6.4109535 0.7637939 1.2106934 -5.5814705 0.5994873 1.8452148 -5.5772552 2.2666016 -0.5410156 -5.9324303 3.3330078 -0.5727539 -6.5322914 2.3361816 -1.5605469 -6.4728279 1.7368164 -1.4255371 -5.7996407 0.3880615 -2.7033691 -6.3621368 0.2736816 -2.2626953 -5.5316505 -0.4267578 -1.4240723 -3.8027763 -0.7515869 -1.5742188 -3.7846985 -0.5274658 -1.9582520 -5.4914742 -1.0157471 -2.3283691 -5.4631462 -1.0477295 -2.8498535 -6.2853966 -0.5747070 -2.4746094 -6.3129196 0.7473145 1.4536133 -3.8847427 0.1640625 0.9609375 -3.8505898 0.9906006 0.7202148 -0.0199890 -1.5555420 1.8144531 -6.2908211 -1.6162109 1.2287598 -6.2835884 -1.1816406 1.5107422 -5.4808235 -1.4237061 0.9328613 -5.4641533 -0.8666992 1.2023926 -3.7977562 -1.2237549 0.9916992 -3.7774658 1.5059814 -0.5996094 6.4203911 1.3382568 0.1447754 0.0418854 1.2280273 -0.8400879 0.2108345 -1.3483887 -0.1376953 -3.7632027 -0.1823730 1.2500000 -3.8341179 0.9791260 0.7902832 -3.8923759 1.4976807 -0.6025391 -4.0074883 1.0061035 -1.1486816 -3.9777527 0.1186523 -1.6787109 -3.8298988 -2.0881348 -1.3510742 -5.4133263 -1.5815430 -1.1303711 -3.7439156 -2.0770264 -0.3166504 -5.4209595 -2.9283447 -1.9931641 -6.1921806 -2.4704590 -0.4313965 -6.2271347 } } phBound { Type BoundBVH AABBMin 1234.6464844 2660.0319824 36.0749092 AABBMax 1241.3123779 2665.6582031 43.0375710 Radius 5.58048 Centroid 1237.9794922 2662.8452148 39.5562401 CG 1061.1433105 2287.0981445 1.3466970 Margin 0.005 GeometryCenter 1237.9794922 2662.8452148 39.5562401 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { -2.0881348 -1.3876953 -2.3624077 -2.4401855 0.7495117 -2.3586235 -2.9284668 -2.0295410 -3.1412125 -3.3330078 0.7407227 -3.1389427 -1.1594238 -0.2180176 3.3837395 -0.4904785 0.8273926 3.1461830 -1.3414307 0.8857422 -0.7199554 -0.3840332 2.1101074 -2.3280373 0.5765381 1.7968750 -2.5249557 -0.5653076 2.8129883 -3.2992210 0.6888428 2.0329590 -3.3600693 3.3328857 -0.6093750 -3.4813309 2.0856934 -0.5839844 -2.7706146 2.3360596 -1.5971680 -3.4218864 1.6307373 -1.3601074 -2.7438126 -0.3298340 -2.8132324 -3.2728500 -0.3935547 -2.2460938 -2.4458427 -1.3028564 1.1853027 -2.4216347 -1.5860596 1.4851074 -3.2362137 0.7415771 0.7585449 3.0415649 1.2912598 -0.3830566 2.9626694 0.4538574 -1.4658203 3.4358292 -0.4681396 -1.1936035 3.4813309 } } phBound { Type BoundBVH AABBMin 1335.0854492 2657.8015137 35.6468010 AABBMax 1340.6845703 2667.0886230 133.1282806 Radius 49.0414 Centroid 1337.8850098 2662.4450684 84.3875427 CG 1337.9492188 2662.5087891 84.3903961 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.70554 } } ComputePolyNeighbors True Vertices 2 { 1337.2069092 2659.9858398 131.3327179 1338.5631104 2664.9042969 37.4423714 } } phBound { Type BoundBVH AABBMin 1334.7387695 2659.9077148 35.7784958 AABBMax 1342.7139893 2669.5219727 54.2820358 Radius 11.1627 Centroid 1338.7263184 2664.7148438 45.0302658 CG 945.7860107 1883.1785889 21.5073681 Margin 0.005 GeometryCenter 1338.7263184 2664.7148438 45.0302658 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.7735596 0.3308105 9.1936951 -2.0473633 -0.2687988 0.5615387 -1.9719238 -1.3605957 9.1017418 -1.8251953 -1.2121582 0.4752769 -1.5350342 0.5668945 0.5293694 -0.2202148 1.5134277 0.3856049 -1.1872559 1.3884277 0.5131416 -0.2073975 1.0039063 9.2517700 0.6512451 1.1992188 0.2338676 1.1604004 -0.0146484 9.2178917 1.3126221 0.6352539 0.1054764 0.9617920 -1.7060547 9.1259384 1.3532715 -0.4260254 0.0451241 0.1369629 4.8071289 -8.7541428 -0.8486328 4.4772949 -8.7860298 0.4360352 3.5844727 -7.6418877 -0.4100342 3.4067383 -7.6635246 0.5946045 2.4631348 -5.2941055 -0.2376709 2.4357910 -5.3074875 3.3414307 0.8076172 -8.9184074 3.9876709 1.7744141 -8.8580551 2.4937744 0.4848633 -7.7754059 3.0444336 1.2653809 -7.5163422 2.7254639 -0.7709961 -9.0103607 3.3803711 -0.2263184 -8.9722099 2.1921387 -0.6452637 -7.8391724 3.0001221 -0.1892090 -7.8035889 0.3605957 -3.3388672 -8.4096756 0.7351074 -4.8071289 -9.2517700 -0.9822998 -3.8029785 -9.2238693 -1.0488281 -2.9365234 -8.2690430 -3.2604980 -1.5529785 -9.1384659 -2.7403564 -1.2402344 -7.9419441 -1.9329834 0.0156250 -5.4595070 -2.2575684 0.4055176 -5.4435654 -2.6173096 -0.0327148 -7.8767509 -3.3029785 0.5004883 -7.8585320 -3.9875488 0.3583984 -9.0482216 -3.3005371 -0.1520996 -9.0653038 2.4349365 -0.5427246 -5.4256287 1.5469971 0.0761719 -5.4059868 1.3302002 -1.1616211 0.0112457 2.2080078 2.7526855 -8.8324318 1.3846436 2.6223145 -8.8512192 1.8889160 2.1264648 -7.6976852 1.0096436 2.2470703 -7.7039490 1.4991455 1.5747070 -5.3277016 1.0798340 1.9863281 -5.3120422 -0.6042480 -2.3791504 9.0678635 0.6668701 -1.8471680 0.0735893 -0.7288818 -2.0561523 0.2637596 -0.5111084 1.7456055 -5.3479118 1.8154297 0.6555176 -5.3715401 1.6123047 -1.1015625 -5.4669113 -0.0983887 -2.3181152 -5.6938019 -1.0258789 -1.8444824 -5.6821289 -2.0812988 -0.8234863 -5.5059128 -2.3591309 2.3242188 -7.7489281 -1.9547119 1.7031250 -5.3709717 -0.9398193 2.6857910 -7.7093582 -3.5051270 3.2443848 -8.8893700 -1.2004395 3.1862793 -8.8589058 } } phBound { Type BoundBVH AABBMin 1335.1029053 2659.9069824 35.7783546 AABBMax 1342.7145996 2669.5212402 45.5757446 Radius 7.84794 Centroid 1338.9086914 2664.7141113 40.6770477 CG 969.2045898 1929.9166260 25.1709061 Margin 0.005 GeometryCenter 1338.9086914 2664.7141113 40.6770477 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { -2.5407715 2.3242188 -3.3958588 0.2545166 3.5844727 -3.2890396 -3.6867676 3.2441406 -4.5362396 -0.0446777 4.8071289 -4.4012222 -0.8852539 1.4509277 4.8026047 0.8001709 0.9172363 4.5226059 0.7602539 2.1220703 -0.9540215 2.8627930 1.2656250 -3.1630630 2.7939453 -0.1625977 -3.4494972 3.8059082 1.7744141 -4.5049782 3.1987305 -0.2260742 -4.6191521 0.5533447 -4.8071289 -4.8986931 0.0989990 -3.0939941 -3.9012985 -1.1639404 -3.8029785 -4.8706474 -1.1297607 -2.7541504 -3.9049759 -3.8057861 -0.5974121 -4.7402267 -3.0937500 -0.3076172 -3.5423737 1.2677002 2.1867676 -3.3478889 1.6146240 2.6875000 -4.4887314 1.1599121 -0.7937012 4.3809967 -0.1975098 -1.9614258 4.2179298 -2.0069580 -1.2119141 4.8283501 -1.9729004 0.1489258 4.8986969 } } phBound { Type BoundBVH AABBMin 1329.3726807 2631.5205078 35.7359543 AABBMax 1336.4493408 2640.7495117 136.4629211 Radius 50.6981 Centroid 1332.9110107 2636.1350098 86.0994415 CG 1332.9387207 2636.1826172 86.1047363 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.76216 } } ComputePolyNeighbors True Vertices 2 { 1334.0336914 2638.2971191 134.6146088 1331.7883301 2633.9729004 37.5842743 } } phBound { Type BoundBVH AABBMin 1327.8146973 2629.2724609 35.8669968 AABBMax 1335.5366211 2637.9643555 54.9701996 Radius 11.1816 Centroid 1331.6756592 2633.6184082 45.4185982 CG 1031.2186279 2039.2937012 25.6622753 Margin 0.005 GeometryCenter 1331.6756592 2633.6184082 45.4185982 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { 0.6134033 -0.6308594 9.5504265 1.5041504 -0.6455078 0.6501045 2.0865479 0.3327637 9.4729118 2.1058350 0.1542969 0.5593719 0.5032959 -0.7956543 0.5940208 -1.1142578 -0.3867188 0.3940582 -0.3771973 -1.0661621 0.5602531 -0.9598389 0.1630859 9.5516014 -1.4393311 0.5080566 0.2087746 -1.0598145 1.9208984 9.4755516 -1.4282227 1.4028320 0.0566711 0.4135742 2.8845215 9.3980331 -0.6132813 2.1379395 -0.0002937 -3.7106934 -2.4980469 -9.0767975 -2.7949219 -3.0598145 -9.0729790 -2.9713135 -1.4248047 -7.9310417 -2.2685547 -1.9765625 -7.9228172 -2.2524414 -0.5014648 -5.5050392 -1.6783447 -1.1420898 -5.4897690 -2.6652832 2.6892090 -9.3331375 -3.8609619 2.5600586 -9.2993698 -1.8785400 2.2583008 -8.1213112 -2.8688965 2.1818848 -7.8775978 -1.0043945 3.2473145 -9.3968582 -1.8712158 3.4047852 -9.3836441 -0.7819824 2.7685547 -8.1694679 -1.6799316 3.1059570 -8.1635971 2.5810547 3.0942383 -8.6780434 3.5177002 4.3459473 -9.5516014 3.8609619 2.3208008 -9.4690895 3.1933594 1.7148438 -8.4863014 3.5887451 -0.9736328 -9.3155212 2.9635010 -0.7421875 -8.1001701 1.3663330 -0.8808594 -5.5728683 1.2724609 -1.3962402 -5.5476151 1.9241943 -1.4450684 -8.0443802 1.9562988 -2.3413086 -8.0053291 2.5551758 -2.8156738 -9.2089310 2.5040283 -1.9335938 -9.2471046 -1.0899658 2.9472656 -5.6865044 -0.9913330 1.8342285 -5.6389351 -0.0145264 2.6074219 -0.0302429 -3.4558105 0.5029297 -9.2168617 -2.8059082 -0.0625000 -9.2065811 -2.7790527 0.6918945 -8.0299950 -2.2911377 -0.0842285 -8.0067940 -2.1481934 0.8034668 -5.5658226 -2.1964111 0.1987305 -5.5376320 1.9868164 2.0903320 9.3965645 0.9665527 2.5390625 0.0616646 2.0524902 1.5773926 0.3080215 -0.9494629 -0.9013672 -5.5176659 -1.6290283 1.6628418 -5.6163254 -0.1005859 2.6665039 -5.6970749 2.0034180 2.1149902 -5.8638611 2.2432861 1.0668945 -5.8227501 2.1302490 -0.4421387 -5.6101608 -0.1165771 -2.8024902 -7.9360313 0.0423584 -2.0161133 -5.4909439 -1.3454590 -1.9184570 -7.9468956 -0.0540771 -4.3459473 -9.0794411 -1.5375977 -2.4831543 -9.1281815 } } phBound { Type BoundBVH AABBMin 1327.8144531 2629.2719727 35.8668480 AABBMax 1335.5363770 2637.9641113 46.0408630 Radius 7.72483 Centroid 1331.6754150 2633.6181641 40.9538574 CG 1035.1461182 2047.4902344 21.7814980 Margin 0.005 GeometryCenter 1331.6754150 2633.6181641 40.9538574 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { -0.1165771 -2.8024902 -3.4715767 -2.9713135 -1.4248047 -3.4665260 -0.0539551 -4.3461914 -4.6149063 -3.7106934 -2.4982910 -4.6120682 -0.7458496 -0.7265625 4.9418411 -1.4335938 0.9553223 4.5972290 -2.2124023 -0.0004883 -1.0640450 -2.8688965 2.1818848 -3.4130363 -1.6848145 3.0688477 -3.6973686 -3.8609619 2.5600586 -4.8347054 -1.8713379 3.4047852 -4.9189644 3.5177002 4.3459473 -5.0870094 2.4359131 2.8718262 -4.0519180 3.8609619 2.3208008 -5.0044861 2.9819336 1.6738281 -4.0149994 3.0720215 -1.8947754 -4.7976265 2.3377686 -1.4965820 -3.5873909 -2.5351563 0.3037109 -3.5539398 -3.1307373 0.2199707 -4.7471352 -0.3138428 2.3725586 4.4490662 1.5155029 2.0698242 4.3353004 2.1057129 0.1542969 5.0238876 1.0037842 -0.7207031 5.0870056 } } phBound { Type BoundBVH AABBMin 1291.7637939 2648.0449219 35.9370346 AABBMax 1296.5142822 2653.8032227 113.7551346 Radius 39.0877 Centroid 1294.1390381 2650.9240723 74.8460846 CG 1294.1082764 2650.9355469 74.8448944 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.36128 } } ComputePolyNeighbors True Vertices 2 { 1294.6610107 2649.9155273 112.3532791 1293.6170654 2651.9326172 37.3388901 } } phBound { Type BoundBVH AABBMin 1290.5371094 2647.9860840 36.0900345 AABBMax 1296.7840576 2655.5991211 50.7558823 Radius 8.83275 Centroid 1293.6606445 2651.7924805 43.4229584 CG 126.1965714 259.8368835 -11.9830599 Margin 0.005 GeometryCenter 1293.6606445 2651.7924805 43.4229584 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.0146484 0.4975586 7.3320274 -1.3553467 -0.1801758 0.4640770 -1.0582275 -0.8623047 7.2956085 -1.1159668 -0.9167480 0.4090004 -1.0058594 0.5185547 0.4117012 -0.0280762 1.3571777 0.2512016 -0.7858887 1.1948242 0.3755074 0.1855469 1.1403809 7.3329239 0.6833496 1.1633301 0.1181259 1.3420410 0.4228516 7.2971840 1.2452393 0.7573242 0.0131493 1.2980957 -0.9372559 7.2609940 1.3489990 -0.0849609 -0.0151711 -0.1433105 3.8066406 -7.1106110 -0.9049072 3.4768066 -7.1090355 0.1992188 2.8784180 -6.2058372 -0.4616699 2.6789551 -6.2020149 0.4466553 2.0473633 -4.3144684 -0.2132568 1.9687500 -4.3075027 2.6746826 0.8410645 -7.2301941 3.1234131 1.6547852 -7.2144623 2.0445557 0.5512695 -6.2946281 2.4338379 1.2145996 -6.1145744 2.2912598 -0.4577637 -7.2600937 2.7753906 0.0207520 -7.2540245 1.8809814 -0.3691406 -6.3173332 2.4926758 0.0490723 -6.3144112 0.5981445 -2.6469727 -6.6819382 0.9804688 -3.8063965 -7.3329239 -0.4531250 -3.1240234 -7.2944870 -0.5469971 -2.4196777 -6.5484123 -2.4165039 -1.4885254 -7.2227783 -2.0014648 -1.1789551 -6.2854118 -1.3985596 -0.0734863 -4.3463898 -1.6828613 0.2148438 -4.3347015 -1.9851074 -0.2094727 -6.2593346 -2.5664063 0.1682129 -6.2409019 -3.1235352 -0.0163574 -7.1728745 -2.5427246 -0.3757324 -7.1908569 2.1129150 -0.2199707 -4.3992157 1.3649902 0.2119141 -4.3771858 1.3802490 -0.6721191 -0.0277596 1.6423340 2.3122559 -7.1760216 0.9962158 2.1523438 -7.1713028 1.4530029 1.8166504 -6.2521439 0.7456055 1.8527832 -6.2413521 1.2258301 1.4018555 -4.3427925 0.8647461 1.7011719 -4.3297539 0.0980225 -1.5798340 7.2600937 0.9011230 -1.2609863 0.0493431 -0.1906738 -1.5175781 0.2338905 -0.3842773 1.4006348 -4.3205376 1.5394287 0.6916504 -4.3663940 1.4963379 -0.7209473 -4.4041595 0.2152100 -1.8090820 -4.5259933 -0.5543213 -1.4953613 -4.5066643 -1.4599609 -0.7514648 -4.3639221 -1.9385986 1.6845703 -6.2085342 -1.5294189 1.2685547 -4.3081741 -0.8342285 2.0690918 -6.2134781 -2.9342041 2.3139648 -7.1124077 -1.0976563 2.4250488 -7.1348877 } } phBound { Type BoundBVH AABBMin 1290.7263184 2647.9858398 36.0899124 AABBMax 1296.7840576 2655.5988770 43.8607941 Radius 6.22578 Centroid 1293.7551270 2651.7924805 39.9753532 CG 855.8468628 1755.3028564 26.5026722 Margin 0.005 GeometryCenter 1293.7551270 2651.7924805 39.9753532 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { -2.0330811 1.6843262 -2.7611809 0.1047363 2.8781738 -2.7584267 -3.0288086 2.3137207 -3.6648064 -0.2377930 3.8063965 -3.6631279 -0.5013428 1.2758789 3.7609863 0.8696289 0.9599609 3.5130424 0.6513672 1.7993164 -0.8779907 2.3393555 1.2145996 -2.6670341 2.3769531 0.0686035 -2.8662300 3.0289307 1.6547852 -3.7668571 2.6807861 0.0207520 -3.8063850 0.8858643 -3.8066406 -3.8854408 0.4263916 -2.4545898 -3.1138153 -0.5474854 -3.1242676 -3.8469925 -0.5736084 -2.2678223 -3.0977631 -2.8645020 -0.7526855 -3.7504501 -2.2955322 -0.4484863 -2.8154411 1.0047607 1.8344727 -2.7992706 1.2246094 2.2321777 -3.7261314 1.2701416 -0.3786621 3.4258423 0.2677002 -1.4025879 3.3466682 -1.2103271 -0.9167480 3.8564529 -1.2751465 0.1689453 3.8854408 } } phBound { Type BoundBVH AABBMin 1299.8599854 2618.5141602 36.0839996 AABBMax 1304.8140869 2623.4497070 105.8756866 Radius 35.0706 Centroid 1302.3370361 2620.9819336 70.9798431 CG 1302.3065186 2621.0541992 70.9799042 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.22087 } } ComputePolyNeighbors True Vertices 2 { 1301.6124268 2621.6975098 104.6184311 1303.0616455 2620.2663574 37.3412552 } } phBound { Type BoundBVH AABBMin 1300.6225586 2617.1657715 36.2212219 AABBMax 1306.1280518 2623.3488770 49.3743782 Radius 7.77089 Centroid 1303.3752441 2620.2573242 42.7977982 CG 1035.6872559 2082.4914551 27.6424599 Margin 0.005 GeometryCenter 1303.3752441 2620.2573242 42.7977982 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { 0.6121826 -0.0278320 6.5757713 0.7153320 0.6447754 0.4162102 0.2729492 1.1445313 6.5433159 0.3072510 1.2067871 0.3668175 0.6105957 -0.0478516 0.3692360 0.0087891 -1.0339355 0.2252922 0.6102295 -0.6857910 0.3367767 -0.2335205 -0.9082031 6.5765800 -0.6518555 -1.0656738 0.1059418 -1.4187012 -0.6162109 6.5445251 -1.2435303 -0.8747559 0.0115929 -1.7578125 0.5561523 6.5120659 -1.5651855 -0.1850586 -0.0136070 0.7851563 -3.0915527 -6.3771896 1.3436279 -2.5993652 -6.3757782 0.2360840 -2.3947754 -5.5657425 0.7446289 -2.0415039 -5.5623131 -0.2050781 -1.7541504 -3.8694572 0.3360596 -1.5043945 -3.8632088 -2.4396973 -1.3420410 -6.4844437 -2.5971680 -2.1606445 -6.4703331 -1.9824219 -0.9204102 -5.6453743 -2.1308594 -1.5939941 -5.4838905 -2.4721680 -0.1279297 -6.5112572 -2.7526855 -0.6701660 -6.5058136 -2.0976563 -0.0898438 -5.6657372 -2.5037842 -0.6162109 -5.6631165 -1.6341553 2.2082520 -5.9927368 -2.2812500 3.0915527 -6.5765762 -0.8695068 2.9064941 -6.5421028 -0.5942383 2.3315430 -5.8729858 1.2583008 2.0546875 -6.4777908 0.9898682 1.6760254 -5.6371078 0.7816162 0.5659180 -3.8980865 1.1040039 0.3986816 -3.8876038 1.2443848 0.8442383 -5.6137238 1.8449707 0.6828613 -5.5971909 2.2690430 0.9948730 -6.4330368 1.6740723 1.1406250 -6.4491615 -2.2541504 -0.2814941 -3.9454613 -1.4965820 -0.4428711 -3.9257050 -1.7545166 0.3071289 -0.0248985 -1.1516113 -2.3112793 -6.4358597 -0.6447754 -1.9958496 -6.4316254 -1.1274414 -1.8361816 -5.6072693 -0.5139160 -1.6708984 -5.5975952 -1.0485840 -1.4194336 -3.8948593 -0.6575928 -1.5744629 -3.8831673 -0.9121094 1.4365234 6.5112610 -1.5087891 0.9421387 0.0442543 -0.6485596 1.4633789 0.2097702 0.3247070 -0.9724121 -3.8749008 -1.5126953 -0.9003906 -3.9160271 -1.8670654 0.3166504 -3.9498978 -1.0754395 1.5996094 -4.0591660 -0.3321533 1.5449219 -4.0418282 0.6462402 1.1613770 -3.9138107 1.7292480 -0.7841797 -5.5681610 1.2648926 -0.5424805 -3.8638115 0.8935547 -1.4182129 -5.5725937 2.7528076 -1.0456543 -6.3788033 1.2169189 -1.6489258 -6.3989639 } } phBound { Type BoundBVH AABBMin 1300.6224365 2617.1660156 36.2211151 AABBMax 1306.1280518 2623.3488770 43.1904755 Radius 5.4109 Centroid 1303.3752441 2620.2573242 39.7057953 CG 1001.4619751 2013.6766357 29.6418324 Margin 0.005 GeometryCenter 1303.3752441 2620.2573242 39.7057953 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { 1.7291260 -0.7839355 -2.4762726 0.2359619 -2.3945313 -2.4739113 2.7528076 -1.0454102 -3.2868004 0.7852783 -3.0913086 -3.2852974 0.3094482 -0.8596191 3.3730659 -0.9477539 -0.9699707 3.1506958 -0.5290527 -1.6254883 -0.7875366 -2.1309814 -1.5939941 -2.3919449 -2.4802246 -0.6267090 -2.5705948 -2.5972900 -2.1604004 -3.3783302 -2.7528076 -0.6701660 -3.4138870 -2.2812500 3.0915527 -3.4846802 -1.5150146 2.0656738 -2.7926407 -0.8696289 2.9064941 -3.4501953 -0.6102295 2.1833496 -2.7782478 1.7635498 1.5251465 -3.3636093 1.3624268 1.1081543 -2.5250435 -0.8208008 -1.7534180 -2.5105400 -0.8981934 -2.1533203 -3.3418045 -1.6599121 0.0610352 3.0724869 -1.0882568 1.2121582 3.0014801 0.3071289 1.2070313 3.4586830 0.6629639 0.2988281 3.4846802 } } phBound { Type BoundBVH AABBMin 1355.8917236 2585.5251465 35.8781281 AABBMax 1360.3302002 2593.5187988 121.4862518 Radius 43.0475 Centroid 1358.1109619 2589.5219727 78.6821899 CG 1358.2181396 2589.7980957 78.6882248 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.49778 } } ComputePolyNeighbors True Vertices 2 { 1357.6732178 2587.3671875 119.9108353 1358.5487061 2591.6767578 37.4535446 } } phBound { Type BoundBVH AABBMin 1355.5440674 2587.9680176 36.0334435 AABBMax 1362.2999268 2595.5446777 52.2319336 Radius 9.55822 Centroid 1358.9219971 2591.7563477 44.1326904 CG 962.6694946 1836.5996094 22.2433090 Margin 0.005 GeometryCenter 1358.9219971 2591.7563477 44.1326904 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { 0.9249268 -1.2062988 8.0261154 0.9678955 0.1713867 0.5494499 0.5069580 0.2302246 8.0962601 0.4658203 0.8625488 0.5449715 0.8395996 -0.6721191 0.4308052 0.1004639 -1.8671875 0.1741104 0.8394775 -1.4497070 0.3337975 -0.1116943 -2.2854004 7.9589577 -0.7114258 -1.8962402 0.0340729 -1.5662842 -1.9279785 7.9619408 -1.4388428 -1.6555176 -0.0562172 -1.9841309 -0.4912109 8.0320854 -1.8345947 -0.8100586 -0.0208969 0.9665527 -3.7883301 -8.0992470 1.6510010 -3.1850586 -8.0606918 0.3031006 -3.0100098 -7.0364113 0.9265137 -2.5771484 -7.0073090 -0.2160645 -2.3798828 -4.8975563 0.4475098 -2.0737305 -4.8746719 -2.9929199 -1.6450195 -8.0300980 -3.1850586 -2.6479492 -8.0843239 -2.4212646 -1.2036133 -6.9714928 -2.6004639 -2.0427246 -6.8326988 -3.0345459 -0.1572266 -7.9532394 -3.3779297 -0.8217773 -7.9912949 -2.5638428 -0.1860352 -6.9202538 -3.0614014 -0.8308105 -6.9590530 -2.0020752 2.6564941 -7.1194878 -2.8048096 3.7883301 -7.7455482 -1.0723877 3.5615234 -7.7388306 -0.7250977 2.7985840 -6.9757195 1.5397949 2.5183105 -7.7651978 1.2222900 1.9785156 -6.7672806 0.9913330 0.4633789 -4.7368736 1.3872070 0.2585449 -4.7433434 1.5356445 0.9594727 -6.8167801 2.2727051 0.7619629 -6.8192673 2.7813721 1.2194824 -7.8194237 2.0511475 1.3981934 -7.8179283 -2.7325439 -0.5754395 -4.8306465 -1.8027344 -0.7731934 -4.8311424 -2.0675049 -0.2072754 0.0124359 -1.4111328 -2.8322754 -8.0748711 -0.7897949 -2.4460449 -8.0482559 -1.3708496 -2.3256836 -7.0187531 -0.6182861 -2.1232910 -7.0000954 -1.2514648 -1.9697266 -4.8873596 -0.7717285 -2.1599121 -4.8920822 -0.9473877 0.5878906 8.0992432 -1.7658691 0.5639648 0.1507301 -0.7089844 1.1884766 0.3887672 0.4328613 -1.4218750 -4.8408432 -1.8217773 -1.3337402 -4.8604965 -2.2583008 0.1574707 -4.7876167 -1.2901611 1.7385254 -4.8159714 -0.3779297 1.6718750 -4.8097534 0.8244629 1.1928711 -4.7008057 2.1328125 -1.0361328 -6.9142838 1.5859375 -0.8950195 -4.8012962 1.1083984 -1.8132324 -6.9655228 3.3779297 -1.2807617 -7.9430428 1.4942627 -2.0202637 -8.0017433 } } phBound { Type BoundBVH AABBMin 1355.5443115 2587.9680176 36.0333138 AABBMax 1362.3002930 2595.5444336 44.6775970 Radius 6.6665 Centroid 1358.9223633 2591.7563477 40.3554535 CG 939.3045654 1792.5874023 14.7543268 Margin 0.005 GeometryCenter 1358.9223633 2591.7563477 40.3554535 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { 2.1328125 -1.0361328 -3.1372452 0.3029785 -3.0100098 -3.2593880 3.3779297 -1.2807617 -4.1659927 0.9665527 -3.7883301 -4.3221397 0.4698486 -1.6584473 4.0311852 -1.0750732 -1.7758789 3.7659645 -0.6137695 -2.2226563 -1.1168213 -2.6003418 -2.0429688 -3.0555077 -3.0324707 -0.8439941 -3.1824493 -3.1850586 -2.6479492 -4.3072052 -3.3780518 -0.8217773 -4.2142639 -2.8046875 3.7880859 -3.9685097 -1.8543701 2.4719238 -3.2243195 -1.0723877 3.5615234 -3.9617119 -0.7442627 2.6164551 -3.2081833 2.1605225 1.8688965 -4.0151825 1.6801758 1.2824707 -3.0215034 -0.9945068 -2.2246094 -3.2324524 -1.1003418 -2.6391602 -4.2844048 -1.9509277 -0.5087891 3.7726326 -1.2520752 0.9069824 3.7818336 0.4659424 0.8625488 4.3221436 0.9038086 -0.2504883 4.2673378 } } phBound { Type BoundBVH AABBMin 1382.7478027 2617.6845703 41.3088074 AABBMax 1386.8271484 2620.9719238 51.1003304 Radius 5.55251 Centroid 1384.7874756 2619.3281250 46.2045670 CG 1008.1999512 1905.2897949 40.6187515 Margin 0.005 GeometryCenter 1384.7874756 2619.3281250 46.2045670 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 117 { Tri 0 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 17 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 17 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 17 18 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 58 18 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 62 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 10 62 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 58 44 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 4 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 62 43 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 43 62 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 44 58 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 55 28 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 28 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 68 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 28 54 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 28 27 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 29 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 27 36 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 61 62 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 61 11 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 11 61 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 37 31 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 32 31 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 32 37 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 27 29 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 36 29 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 44 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 55 17 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 54 55 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 59 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 44 6 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 43 6 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 45 8 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 8 7 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 31 60 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 4 11 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 43 10 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 4 3 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 3 6 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 60 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 5 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 54 59 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 47 26 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 47 29 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 47 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 32 29 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 30 22 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 22 60 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 47 59 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 7 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 46 23 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 23 30 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 46 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 22 30 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 60 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 60 53 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 66 45 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 6 5 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 8 45 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 38 8 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 66 1 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 65 1 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 52 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 66 5 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 53 52 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 52 53 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 50 51 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 38 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 7 14 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 24 46 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 9 14 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 14 9 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 20 9 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 20 19 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 24 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 25 53 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 53 25 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 25 24 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 40 48 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 40 24 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 48 49 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 38 1 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 0 39 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 2 1 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 2 65 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 41 2 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 65 52 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 51 42 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 38 39 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 39 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 12 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 19 12 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 12 13 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 40 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 13 57 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 51 64 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 63 42 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 51 50 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 34 63 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 35 64 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 64 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 35 56 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 48 50 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 50 48 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 56 35 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 40 56 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 56 40 57 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 69 { -0.2219238 -0.9392090 4.3741646 -0.4914551 -1.1350098 2.5474396 0.0321045 -1.0620117 4.1715965 0.7583008 -1.2277832 -1.3273659 1.2758789 -0.4006348 -2.4536629 0.9132080 -1.1701660 0.5342255 0.1336670 -1.5751953 -0.5430870 -0.8233643 0.7036133 0.1767235 -1.0286865 -0.6101074 -0.5095749 -0.5806885 0.6555176 1.3293228 1.0002441 -1.0261230 -2.8448257 0.9356689 -0.6169434 -4.0052376 0.2888184 0.9125977 4.0479202 0.7299805 0.9699707 4.3466644 0.3380127 1.0935059 2.7430954 -2.0396729 -0.6533203 -4.4580116 -1.3815918 -1.1926270 -4.5869484 -0.9770508 -1.3493652 -3.1011925 -0.6137695 -1.5161133 -4.4141312 -0.5745850 0.6298828 2.7388878 -0.8294678 -0.0683594 2.9790230 -0.4265137 0.4272461 4.8957634 1.0449219 0.9199219 -0.5611191 0.2785645 1.3686523 -0.5427856 0.8339844 0.9416504 0.1702614 1.2767334 0.3276367 0.4826813 -0.8591309 0.9104004 -3.0419846 -0.6573486 1.0793457 -3.7397041 -1.5457764 0.3400879 -3.6074638 0.1112061 1.1276855 -3.0153885 0.8122559 0.7753906 -1.6612740 1.0269775 0.1694336 -3.4986649 0.8110352 0.7602539 -3.0467949 1.7740479 0.0617676 4.4792061 1.7891846 -0.2666016 4.1098328 1.9315186 -0.2783203 3.7732201 0.4818115 1.6437988 -4.5218773 0.8825684 1.3161621 -4.4691315 -0.7414551 -0.6503906 2.4641876 -0.5168457 -0.3852539 4.6386452 0.8707275 0.9011230 2.3436661 0.0832520 -1.0178223 4.8783302 1.0499268 -1.2004395 4.3707085 0.4389648 -1.4392090 -1.6854668 -0.0134277 -1.6435547 -2.0886497 -0.3676758 -1.4777832 -0.8582115 -0.3503418 1.1093750 -0.5097275 -0.6446533 0.8283691 -1.6071739 1.3891602 0.4567871 2.6933556 1.4401855 0.1655273 2.3540382 1.6733398 -0.3125000 3.2977524 1.3148193 -0.8776855 3.0947342 0.8901367 -1.2241211 2.4154968 1.4417725 -0.5095215 1.6354294 -1.2297363 0.3991699 -2.9431038 -1.3652344 -0.3664551 -2.9685020 1.8157959 0.3864746 4.2477837 1.3450928 0.8559570 4.0238762 0.0927734 -1.5932617 -4.0053902 -1.1545410 -0.3027344 -1.9293594 1.3369141 0.1928711 -0.8851089 1.1903076 0.0061035 -4.8957596 0.7503662 -1.0119629 -4.0432587 1.5626221 -0.8122559 4.3577843 2.0396729 -0.5534668 3.7087517 0.3320313 -1.4555664 2.4045296 0.2504883 -1.3215332 2.0372581 0.5753174 -1.0864258 -4.7557030 -1.8229980 1.0224609 -4.5876999 } } phBound { Type BoundBVH AABBMin 1381.1054688 2615.1052246 39.0170593 AABBMax 1392.6483154 2622.6411133 106.0831146 Radius 34.2341 Centroid 1386.8769531 2618.8730469 72.5500870 CG 1385.0692139 2619.7890625 49.0894890 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 4 { Capsule 0 { MaterialIndex 0 CenterTop 5 CenterBottom 6 Radius 0.722404 } Capsule 1 { MaterialIndex 0 CenterTop 3 CenterBottom 4 Radius 0.722404 } Sphere 2 { MaterialIndex 0 Center 2 Radius 2.20304 } Capsule 3 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.68623 } } ComputePolyNeighbors True Vertices 7 { 1390.3327637 2617.3249512 104.2356873 1384.3845215 2619.5100098 41.6138916 1384.3743896 2619.3940430 41.2201004 1386.4017334 2621.5302734 41.0186005 1385.7100830 2620.9189453 41.2201004 1382.9278564 2619.8254395 41.1658859 1382.1932373 2620.4245605 41.0349655 } } phBound { Type BoundBVH AABBMin 1338.6497803 2611.4594727 35.8971519 AABBMax 1345.1483154 2618.2846680 130.2331238 Radius 47.4028 Centroid 1341.8990479 2614.8720703 83.0651398 CG 1341.8861084 2614.8808594 83.0654144 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.65023 } } ComputePolyNeighbors True Vertices 2 { 1342.7904053 2613.8229980 128.5337219 1341.0076904 2615.9211426 37.5965652 } } phBound { Type BoundBVH AABBMin 1337.0021973 2611.5380859 36.0826187 AABBMax 1344.3710938 2620.2258301 53.8614464 Radius 10.5577 Centroid 1340.6866455 2615.8818359 44.9720306 CG 1386.2449951 2703.9963379 41.6395493 Margin 0.005 GeometryCenter 1340.6866455 2615.8818359 44.9720306 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -0.9223633 0.1982422 8.8883247 -1.1405029 -0.6953125 0.5625839 -0.6038818 -1.4204102 8.8444519 -0.6573486 -1.5002441 0.4958191 -0.9177246 0.2250977 0.4990883 0.0091553 1.4819336 0.3045235 -0.8417969 1.0837402 0.4552155 0.3205566 1.2839355 8.8894157 0.9023438 1.4462891 0.1432037 1.8819580 0.7507324 8.8460884 1.6766357 1.1196289 0.0156708 2.2001953 -0.8679199 8.8022156 2.0281982 0.1528320 -0.0183907 -0.7933350 4.3439941 -8.6199074 -1.6033936 3.7470703 -8.6180000 -0.1362305 3.3408203 -7.5230865 -0.8626709 2.9255371 -7.5184555 0.3822021 2.4265137 -5.2302589 -0.3760986 2.1540527 -5.2218094 3.3422852 1.6074219 -8.7648773 3.6511230 2.6909180 -8.7458038 2.6768799 1.0937500 -7.6307259 2.9562988 1.9831543 -7.4124527 3.2427979 -0.0312500 -8.8013916 3.6844482 0.6660156 -8.7937622 2.7338867 -0.0380859 -7.6582489 3.3428955 0.6223145 -7.6549797 1.8382568 -3.0781250 -8.1002464 2.6052246 -4.3437500 -8.8894119 0.7261963 -3.9277344 -8.8428116 0.4235840 -3.1208496 -7.9383812 -2.0383301 -2.5295410 -8.7558861 -1.6322021 -2.0512695 -7.6195526 -1.2204590 -0.5810547 -5.2689552 -1.6350098 -0.3178711 -5.2547836 -1.8765869 -0.9013672 -7.5879440 -2.6660156 -0.6130371 -7.5655975 -3.2740479 -0.9829102 -8.6953888 -2.4901123 -1.2495117 -8.7171898 2.9674072 0.2011719 -5.3329926 1.9663086 0.5080566 -5.3062859 2.2249756 -0.5322266 -0.0336494 1.7225342 3.0646973 -8.6992035 1.0028076 2.6999512 -8.6934814 1.6337891 2.4277344 -7.5792236 0.7882080 2.2778320 -7.5661430 1.4782715 1.8757324 -5.2645950 0.9703369 2.1308594 -5.2487869 0.9572754 -1.9536133 8.8011246 1.8190918 -1.3581543 0.0598183 0.5992432 -1.9584961 0.2835388 -0.4235840 1.4362793 -5.2376175 2.0418701 1.1220703 -5.2932053 2.3753662 -0.5583496 -5.3389854 1.1579590 -2.1923828 -5.4866829 0.1634521 -2.0310059 -5.4632492 -1.1086426 -1.3989258 -5.2902069 -2.3369141 1.3486328 -7.5263596 -1.7404785 0.9685059 -5.2226295 -1.1369629 2.1037598 -7.5323524 -3.6844482 1.8215332 -8.6220856 -1.5449219 2.4523926 -8.6493378 } } phBound { Type BoundBVH AABBMin 1337.0023193 2611.5378418 36.0824814 AABBMax 1344.3710938 2620.2255859 45.5028076 Radius 7.39118 Centroid 1340.6867676 2615.8818359 40.7926445 CG 879.6842041 1716.4161377 32.1918831 Margin 0.005 GeometryCenter 1340.6867676 2615.8818359 40.7926445 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { -2.3370361 1.3483887 -3.3471222 -0.1362305 3.3405762 -3.3439293 -3.6844482 1.8210449 -4.4426956 -0.7933350 4.3437500 -4.4406624 -0.4163818 1.2827148 4.5592918 1.2893066 1.2827148 4.2587166 0.8029785 2.2145996 -1.0644989 2.9561768 1.9829102 -3.2331390 3.3123779 0.6394043 -3.4747581 3.6510010 2.6904297 -4.5665550 3.6843262 0.6655273 -4.6144714 2.6051025 -4.3439941 -4.7101631 1.6945801 -2.8718262 -3.7747498 0.7261963 -3.9279785 -4.6635513 0.4622803 -2.9235840 -3.7552948 -2.6561279 -1.7568359 -4.5465164 -2.0667725 -1.2426758 -3.4130478 1.2109375 2.3522949 -3.3934441 1.3625488 2.8818359 -4.5170403 2.1263428 -0.1899414 4.1530113 1.2208252 -1.6723633 4.0570297 -0.6574707 -1.5004883 4.6750221 -1.0292969 -0.2355957 4.7101631 } } phBound { Type BoundBVH AABBMin 1262.2554932 2706.5485840 35.9129601 AABBMax 1270.6685791 2713.8972168 132.6633606 Radius 48.6966 Centroid 1266.4620361 2710.2229004 84.2881622 CG 1266.4102783 2710.1247559 84.2848663 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.69253 } } ComputePolyNeighbors True Vertices 2 { 1264.6790771 2708.9538574 130.8933105 1268.2449951 2711.4919434 37.6830215 } } phBound { Type BoundBVH AABBMin 1264.2189941 2707.0000000 36.1150589 AABBMax 1271.7735596 2715.9125977 54.3891640 Radius 10.8449 Centroid 1267.9963379 2711.4562988 45.2521133 CG 868.7197876 1857.0764160 20.3830929 Margin 0.005 GeometryCenter 1267.9963379 2711.4562988 45.2521133 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 31 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 37 38 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 35 38 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 35 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 30 55 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 56 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 32 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 33 35 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 36 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 36 57 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 36 34 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 29 28 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 27 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 31 29 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 30 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 27 54 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 55 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 28 23 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 54 27 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 25 53 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 25 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 26 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 60 37 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 58 57 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 57 58 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 51 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 57 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 61 60 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 59 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 14 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 59 51 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 18 16 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 15 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 43 13 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 15 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 47 45 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 47 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 44 45 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 44 22 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 20 42 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 21 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 22 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 24 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 53 25 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 39 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 44 46 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 40 21 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 22 52 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 40 39 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 26 21 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 52 22 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 54 50 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 54 53 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 39 41 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 34 4 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 34 33 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 55 3 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 3 55 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 12 52 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 12 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 40 52 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 49 53 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 58 6 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 18 51 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 5 8 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 17 18 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 47 17 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 8 10 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 46 47 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 46 10 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 6 58 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 1 56 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 33 56 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 1 4 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 5 51 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 50 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 41 11 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 12 11 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 11 12 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 10 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 48 2 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 3 50 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 48 49 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 4 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 0 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 6 4 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 7 9 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 8 5 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.9880371 0.1303711 9.0117874 -1.7187500 -0.7507324 0.4700165 -1.6606445 -1.5300293 8.9786453 -1.2207031 -1.5764160 0.4270439 -1.4862061 0.1933594 0.4219894 -0.5246582 1.4821777 0.2832451 -1.4052734 1.0742188 0.3854752 -0.7147217 1.2424316 9.0909882 0.3992920 1.4455566 0.1709023 0.8861084 0.6943359 9.1370506 1.1994629 1.1103516 0.0849571 1.2132568 -0.9658203 9.1039085 1.5607910 0.1186523 0.0664215 -0.8154297 4.4562988 -8.8899002 -1.6453857 3.8447266 -8.9384880 -0.2082520 3.4221191 -7.7321968 -0.9527588 2.9965820 -7.7723579 0.1859131 2.4738770 -5.3578110 -0.5911865 2.1953125 -5.3951683 3.4259033 1.6462402 -8.8050766 3.7415771 2.7568359 -8.7623863 2.6767578 1.1149902 -7.6852951 2.9506836 2.0261230 -7.4415054 3.3248291 -0.0341797 -8.8550720 3.7772217 0.6801758 -8.8179970 2.7360840 -0.0456543 -7.7150650 3.3598633 0.6311035 -7.6723747 1.8431396 -3.1608887 -8.2335281 2.6743164 -4.4562988 -9.0014000 0.7479248 -4.0280762 -9.0634689 0.3848877 -3.2041016 -8.1518021 -2.0870361 -2.5917969 -9.1322784 -1.7381592 -2.1064453 -7.9425583 -1.4549561 -0.6088867 -5.5052643 -1.8798828 -0.3386230 -5.5139694 -1.9895020 -0.9270020 -7.9198112 -2.7989502 -0.6306152 -7.9425583 -3.3547363 -1.0043945 -9.1370544 -2.5509033 -1.2788086 -9.1137428 2.8375244 0.1896973 -5.3190536 1.8110352 0.5053711 -5.3496704 1.7626953 -0.5842285 0.0599594 1.7644043 3.1418457 -8.8272667 1.0268555 2.7685547 -8.8657455 1.6066895 2.4838867 -7.6886635 0.7399902 2.3310547 -7.7260170 1.3099365 1.9084473 -5.3302879 0.7890625 2.1704102 -5.3429260 -0.0600586 -2.0781250 9.0247078 1.3410645 -1.4313965 0.1276474 0.0783691 -2.0468750 0.2821198 -0.6394043 1.4594727 -5.4170761 1.8881836 1.1347656 -5.3294449 2.2312012 -0.5888672 -5.3637085 0.9921875 -2.2626953 -5.5940170 -0.0273438 -2.0964355 -5.6282806 -1.3395996 -1.4475098 -5.5237999 -2.4630127 1.3811035 -7.8743134 -1.9888916 0.9807129 -5.4819527 -1.2333984 2.1540527 -7.8060608 -3.7773438 1.8718262 -9.0741425 -1.5845947 2.5170898 -8.9724693 } } phBound { Type BoundBVH AABBMin 1264.2189941 2707.0000000 36.1173096 AABBMax 1271.7734375 2715.9123535 45.6982994 Radius 7.55472 Centroid 1267.9962158 2711.4560547 40.9078064 CG 916.6563110 1960.1572266 27.4468517 Margin 0.005 GeometryCenter 1267.9962158 2711.4560547 40.9078064 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 32 { Tri 0 { Vertices 2 15 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 16 0 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 15 13 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 14 16 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 13 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 12 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 11 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 8 12 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 3 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 1 17 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 18 3 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 17 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 9 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 10 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 16 22 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 4 0 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 22 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 14 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 21 14 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 12 20 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 20 12 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 8 19 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 1 0 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 1 6 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 7 17 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 8 7 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 0 4 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 19 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 5 19 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 23 { -2.4628906 1.3811035 -3.5303726 -0.2082520 3.4221191 -3.3881226 -3.7772217 1.8720703 -4.7298965 -0.8153076 4.4562988 -4.5456924 -0.9648438 1.2783203 4.6787682 0.7993164 1.2780762 4.4720039 0.6176758 2.2568359 -1.0032120 2.9506836 2.0266113 -3.0971527 3.3287354 0.6489258 -3.3291779 3.7416992 2.7570801 -4.4181747 3.7772217 0.6804199 -4.4739647 2.6741943 -4.4560547 -4.6574173 1.6875000 -2.9492188 -3.7472115 0.7479248 -4.0278320 -4.7192192 0.4245605 -3.0012207 -3.8005943 -2.7207031 -1.7980957 -4.7904968 -2.1840820 -1.2761230 -3.5927811 1.1734619 2.4077148 -3.3631592 1.3956299 2.9553223 -4.5023842 1.6618652 -0.2326660 4.4071960 0.7392578 -1.7517090 4.2488518 -1.2205811 -1.5764160 4.7710953 -1.6024170 -0.2785645 4.7904930 } } phBound { Type BoundBVH AABBMin 1198.0983887 2766.4624023 32.6710358 AABBMax 1200.9855957 2769.3496094 102.6825104 Radius 35.0652 Centroid 1199.5419922 2767.9060059 67.6767731 CG 1199.5048828 2767.8996582 67.6747818 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.44355 } } ComputePolyNeighbors True Vertices 2 { 1199.5419922 2767.9060059 101.2389603 1199.5419922 2767.9060059 34.1145859 } } phBound { Type BoundBVH AABBMin 1196.8881836 2765.5656738 34.7705536 AABBMax 1201.7239990 2770.4382324 48.1120491 Radius 7.50204 Centroid 1199.3061523 2768.0019531 41.4412994 CG 9066.1865234 20267.8457031 1863.3010254 Margin 0.005 GeometryCenter 1199.3061523 2768.0019531 41.4412994 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 87 { Tri 0 { Vertices 29 52 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 29 43 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 29 20 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 43 22 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 20 22 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 21 22 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 24 25 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 10 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 29 30 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 29 17 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 17 16 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 26 17 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 18 17 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 19 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 18 35 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 18 40 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 51 40 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 24 8 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 17 26 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 36 18 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 26 20 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 20 21 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 21 25 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 27 20 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 3 25 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 3 10 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 1 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 1 9 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 18 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 35 34 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 1 51 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 41 36 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 41 5 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 41 27 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 28 27 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 27 3 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 34 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 3 0 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 1 0 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 5 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 7 5 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 48 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 48 7 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 49 48 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 49 3 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 0 2 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 23 2 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 47 2 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 47 12 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 47 36 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 34 36 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 4 6 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 6 48 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 45 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 39 48 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 39 49 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 39 44 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 44 23 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 44 2 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 5 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 12 47 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 45 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 32 31 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 31 32 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 48 39 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 42 32 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 31 50 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 33 50 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 14 50 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 50 14 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 14 15 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 4 15 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 15 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 46 15 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 37 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 38 42 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 37 23 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 11 38 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 12 11 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 13 12 46 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 53 { 1.5700684 -0.8142090 -1.6884766 1.7086182 -0.2883301 -2.4786110 1.6041260 0.2485352 -0.2338219 0.9899902 -1.4313965 -2.4264908 -1.1440430 0.4902344 3.4741745 -1.0386963 0.3889160 0.4587936 -1.2614746 -0.3327637 1.1520195 -1.0650635 -0.2595215 -0.2625275 2.4178467 -0.3295898 -6.5229378 1.9030762 0.4047852 -6.5398331 1.9388428 -0.9228516 -5.5642281 1.1660156 0.9958496 5.9744720 1.3280029 0.8205566 1.9804306 0.5991211 1.1269531 5.1617355 -1.0329590 -0.1828613 5.2513161 -0.4801025 0.8757324 5.5740051 -0.9161377 1.4179688 -6.4596214 -1.0256348 -0.2268066 -5.6299896 -0.3696289 1.4477539 -5.8749084 -0.3261719 2.4362793 -6.3708572 -0.3215332 -1.6816406 -5.9545135 0.1304932 -1.9294434 -6.5740395 -0.3956299 -2.4362793 -6.5880852 1.6519775 0.5339355 2.4053230 2.0682373 -1.6882324 -6.5526619 1.3333740 -1.4418945 -6.0174217 -0.8607178 -1.1274414 -5.6623611 -0.1821289 -1.3864746 -2.1292496 -1.0799561 0.0046387 -3.2406502 -1.1807861 -0.8474121 -6.1080208 -1.4943848 -0.2536621 -6.5654869 -0.7410889 -0.9782715 4.0998077 0.4261475 -1.1726074 5.3358078 -0.4182129 -1.0334473 5.7922554 0.7106934 1.1149902 -1.0219193 0.1831055 1.4072266 -5.5522194 -0.6009521 1.2792969 -2.1410599 1.3360596 -0.6735840 2.9688606 1.4440918 -0.1174316 6.6707497 1.0151367 -0.9304199 3.7188911 0.2086182 2.1335449 -6.2584724 -1.2070313 -0.3454590 -1.4492569 1.2075195 -0.7326660 5.5047874 -1.1517334 -2.2512207 -6.6707458 1.3990479 -1.0268555 0.8922386 0.0222168 1.3159180 2.5413208 0.7376709 1.3525391 2.8287926 0.2175293 1.1599121 0.8360481 -0.7636719 -1.0646973 1.3983650 0.5300293 -1.4985352 1.0003433 -1.2834473 -0.5417480 3.9123001 1.4754639 0.8693848 -6.5479813 -2.4179688 -1.3723145 -6.5937881 } } phBound { Type BoundBVH AABBMin 1184.6417236 2737.4345703 34.3231583 AABBMax 1190.6978760 2743.9394531 78.8031464 Radius 22.6796 Centroid 1187.6697998 2740.6870117 56.5631523 CG 1095.9394531 2528.2429199 38.9021416 Margin 0.005 GeometryCenter 1188.7524414 2741.9682617 41.8737640 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 109 { Sphere 0 { MaterialIndex 1 Center 66 Radius 1.80783 } Capsule 1 { MaterialIndex 1 CenterTop 64 CenterBottom 65 Radius 0.908885 } Tri 2 { Vertices 52 59 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 24 59 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 15 59 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 59 15 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 25 51 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 38 25 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 27 25 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 27 38 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 11 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 11 42 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 39 42 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 22 36 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 15 52 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 36 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 14 13 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 13 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 10 55 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 9 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 22 52 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 24 50 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 24 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 24 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 27 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 26 27 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 11 12 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 10 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 22 24 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 37 20 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 34 22 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 26 37 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 36 22 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 36 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 36 54 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 36 53 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 13 54 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 12 55 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 53 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 55 10 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 35 49 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 49 35 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 49 22 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 20 21 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 23 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 20 37 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 37 46 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 37 26 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 35 48 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 53 36 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 17 53 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 55 53 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 17 57 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 56 12 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 12 56 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 56 46 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 35 4 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 49 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 30 3 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 30 49 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 3 2 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 0 2 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 7 0 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 3 30 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 30 21 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 30 23 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 32 31 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 23 46 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 35 43 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 43 35 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 57 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 43 17 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 44 17 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 44 18 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 44 43 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 46 19 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 46 56 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 56 57 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 46 47 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 19 56 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 18 47 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 19 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 18 32 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 6 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 2 1 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 1 29 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 0 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 8 7 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 8 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 33 8 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 32 33 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 18 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 18 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 18 44 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 8 5 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 8 45 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 41 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 28 29 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 60 29 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 40 29 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 40 44 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 33 45 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 60 61 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 5 62 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 62 5 45 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 67 { -1.1945801 -1.0302734 2.9404068 -1.4210205 -0.5104980 4.9723091 -1.3204346 -0.8632813 3.0981789 -0.8867188 -0.9985352 2.4018364 -1.0759277 -0.6677246 0.7521057 -0.2752686 -1.3903809 4.6112175 -1.1911621 -1.1574707 4.9049873 -0.2556152 -1.1716309 3.8421173 0.1956787 -0.9291992 4.1386070 -0.3179932 1.3112793 -4.9444199 -0.2856445 0.8508301 -2.7466049 0.1542969 1.1225586 -3.8754349 0.4628906 1.0178223 -3.0247345 -0.7622070 0.3127441 -2.8057632 -0.7755127 0.0971680 -4.8165817 -0.6982422 -0.4135742 -4.5561333 0.0034180 0.6865234 2.2780685 -0.4847412 0.6774902 2.0230560 0.1461182 0.4838867 2.4637184 0.7265625 0.3959961 1.8510170 0.2946777 -1.0500488 -0.9737930 -0.0450439 -1.2407227 0.6596184 -0.2543945 -0.9604492 -1.9394150 0.5800781 -0.9008789 0.6181374 0.8909912 -0.8024902 -3.1376114 1.2813721 0.0749512 -3.3157730 1.1314697 -0.1440430 -2.1209831 0.9816895 0.7517090 -3.3300552 -1.3096924 -0.0627441 5.3041573 -0.9885254 0.2680664 3.6360664 -0.1013184 -1.1071777 2.6439171 0.4234619 -0.7705078 2.3419876 0.6350098 -0.3557129 2.6357574 0.3258057 -0.6103516 5.4068413 -0.8806152 -0.5173340 -1.3695602 -0.9953613 -0.2644043 -0.3828506 -0.9359131 0.1279297 -2.1985016 0.9013672 -0.7634277 -1.8367310 1.0354004 0.7565918 -5.1497917 0.8796387 1.1835938 -5.5040817 0.1623535 0.2465820 4.8648643 0.4387207 -0.1867676 4.8281441 0.0893555 1.5065918 -5.0355453 -1.0892334 0.2751465 2.7452393 -0.7944336 0.4782715 3.3354988 0.1938477 -0.9213867 5.0165100 0.7221680 -0.4592285 0.6806984 0.7243652 0.0666504 1.7503777 -0.9642334 0.3498535 0.8670273 -0.4543457 -1.1298828 0.5528564 1.1767578 -0.5842285 -4.7179832 1.3466797 -0.2338867 -4.7234230 -0.3466797 -0.6838379 -3.1212921 -0.5252686 0.7346191 -1.2389908 -0.5681152 0.9482422 -1.8632507 0.0164795 1.0485840 -2.0863037 0.4096680 0.3520508 1.2321968 -0.0502930 0.6501465 0.9323082 1.4211426 0.0576172 -5.4768829 0.1434326 -1.0805664 -5.2619934 -0.4848633 0.4638672 4.6812592 -0.1827393 0.3852539 5.3966408 -0.6368408 -1.5063477 5.5040855 -0.2786865 -0.9411621 -5.1253128 -2.7730713 -3.1816406 35.9254684 0.1070555 0.3925780 -5.2851105 0.1375732 0.1633301 -5.7427750 } } phBound { Type BoundBVH AABBMin 1167.7723389 2758.3349609 33.8028107 AABBMax 1174.3277588 2763.9091797 96.4366302 Radius 31.6111 Centroid 1171.0500488 2761.1220703 65.1197205 CG 1171.0390625 2761.2158203 65.1242981 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.958654 } } ComputePolyNeighbors True Vertices 2 { 1172.9290771 2759.7192383 95.4068375 1169.1710205 2762.5249023 34.8326035 } } phBound { Type BoundBVH AABBMin 1167.6171875 2760.8769531 35.2990189 AABBMax 1170.8078613 2763.9462891 47.5064850 Radius 6.49275 Centroid 1169.2125244 2762.4116211 41.4027519 CG 887.3877563 2096.0561523 34.7176704 Margin 0.005 GeometryCenter 1169.2125244 2762.4116211 41.4027519 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 87 { Tri 0 { Vertices 17 16 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 18 17 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 19 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 18 40 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 35 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 51 40 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 29 30 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 29 52 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 29 17 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 26 17 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 29 20 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 29 43 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 43 22 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 20 22 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 21 22 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 24 25 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 10 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 24 8 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 17 26 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 36 18 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 18 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 1 9 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 1 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 3 10 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 3 25 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 26 20 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 21 25 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 27 20 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 20 21 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 35 34 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 1 51 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 41 36 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 41 5 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 28 27 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 41 27 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 27 3 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 34 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 3 0 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 1 0 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 5 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 7 5 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 48 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 47 36 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 34 36 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 47 2 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 47 12 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 23 2 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 0 2 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 48 7 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 49 3 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 49 48 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 4 6 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 6 48 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 45 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 45 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 12 47 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 5 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 44 23 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 44 2 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 39 44 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 39 49 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 39 48 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 50 14 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 14 15 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 4 15 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 46 15 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 13 12 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 15 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 12 11 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 11 38 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 37 23 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 37 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 38 42 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 31 50 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 32 31 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 48 39 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 42 32 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 14 50 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 33 50 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 31 32 33 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 53 { 0.6187744 0.8234863 -1.4601326 0.2161865 0.8962402 -2.1493912 -0.0003662 0.6818848 -0.1084099 1.0373535 0.5334473 -2.1685066 0.3103027 -1.3002930 3.1486130 0.1978760 -1.0952148 0.4277420 0.7313232 -1.2004395 1.0197411 0.5853271 -1.0195313 -0.2472763 -0.0505371 1.5346680 -5.7754097 -0.4843750 1.1262207 -5.7829018 0.4379883 1.2377930 -4.9484100 -0.1011963 0.0622559 5.5047989 -0.2253418 0.3525391 1.9001503 -0.1787109 -0.2885742 4.7559471 0.8408203 -1.2363281 4.7323341 0.1118164 -0.9897461 5.0807114 -0.8762207 -0.8254395 -5.7748451 0.2595215 -0.7724609 -5.0883980 -0.9149170 -0.4941406 -5.2266960 -1.5953369 -0.5407715 -5.6376686 1.1289063 -0.1555176 -5.4077263 1.2137451 0.1911621 -5.9596214 1.5953369 -0.1044922 -6.0089073 -0.0441895 0.5751953 2.2850685 0.8723145 1.4384766 -5.8629227 0.8106689 0.9099121 -5.3972321 0.8330078 -0.5754395 -5.1434898 1.1361084 -0.2524414 -1.9404411 0.2467041 -0.9304199 -2.9259796 0.6546631 -0.7939453 -5.5471535 0.2695313 -1.0383301 -5.9502525 1.2702637 -0.9194336 3.6755829 1.3559570 -0.1862793 4.8254738 1.3704834 -0.7729492 5.2122688 -0.5278320 0.0441895 -0.8207207 -0.9228516 -0.1408691 -4.9173012 -0.5734863 -0.7856445 -1.8714752 0.8094482 0.4614258 2.7395134 0.6414795 0.3237305 6.1037331 1.0505371 0.2443848 3.3957939 -1.4412842 -0.1652832 -5.5280380 0.5887451 -1.0546875 -1.3263283 1.0024414 0.2768555 5.0211182 1.5413818 -0.6149902 -6.1037331 0.9190674 0.6240234 0.8552017 -0.3945313 -0.5759277 2.3774567 -0.4705811 -0.1220703 2.6636200 -0.4063721 -0.3613281 0.8400230 1.1777344 -0.8129883 1.2337532 1.3170166 0.0949707 0.9052391 1.0249023 -1.3098145 3.5024223 -0.7489014 0.8010254 -5.7890892 1.0895996 -1.5346680 -6.0482635 } } phBound { Type BoundBVH AABBMin 1164.1688232 2822.0615234 31.5742989 AABBMax 1167.2572021 2825.0502930 77.4997864 Radius 23.0631 Centroid 1165.7130127 2823.5559082 54.5370407 CG 1165.6837158 2823.5712891 54.5363350 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.26598 } } ComputePolyNeighbors True Vertices 2 { 1165.6546631 2823.5671387 76.2303391 1165.7713623 2823.5446777 32.8437424 } } phBound { Type BoundBVH AABBMin 1164.1411133 2822.0908203 33.6143608 AABBMax 1168.7922363 2825.4963379 42.8283386 Radius 5.43433 Centroid 1166.4666748 2823.7934570 38.2213516 CG 895.9360352 2169.0097656 32.9615936 Margin 0.005 GeometryCenter 1166.4666748 2823.7934570 38.2213516 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 51 57 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 4 51 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 51 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 61 51 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 61 50 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 17 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 38 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 38 18 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 39 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 38 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 38 52 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 3 50 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 18 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 3 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 45 39 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 0 4 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 0 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 39 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 0 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 45 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 0 2 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 30 45 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 38 40 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 40 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 40 60 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 6 57 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 40 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 60 40 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 33 6 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 25 23 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 22 60 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 32 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 23 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 57 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 57 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 5 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 5 6 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 33 47 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 5 7 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 7 5 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 47 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 39 30 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 58 34 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 39 34 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 34 36 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 41 34 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 33 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 36 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 32 33 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 29 30 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 27 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 29 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 26 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 58 31 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 58 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 37 35 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 36 37 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 46 47 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 26 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 26 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 28 26 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 29 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 28 15 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 55 29 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 55 53 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 31 29 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 26 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 46 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 46 54 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 54 46 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 35 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 31 49 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 12 11 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 42 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 42 11 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 43 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 53 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 49 21 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 53 55 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 21 44 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 9 8 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 49 53 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 49 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 43 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 56 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 56 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 55 56 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 56 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 48 49 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 48 19 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 44 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.3637695 -1.3300781 -1.8131714 -0.8688965 -1.6865234 -3.6181183 -0.4235840 -1.6960449 -2.0786362 -1.6429443 -0.8586426 -2.8078117 -1.2503662 -1.5209961 -3.5833893 0.2863770 -1.3437500 -2.1173019 0.1416016 -1.2800293 -4.1293564 -0.5502930 -1.5583496 -1.0855408 -0.4268799 0.6379395 4.1266785 -1.2487793 0.2968750 2.8125877 -0.8566895 0.6015625 4.6069870 0.0716553 -1.2597656 1.6860619 -0.6843262 -1.3879395 2.3882408 -0.9071045 -1.0637207 4.2751579 -1.2779541 -0.6193848 3.9922638 -1.5543213 -0.6013184 2.4475784 -2.2060547 0.6811523 -4.6069908 -2.3255615 0.0939941 -4.5320511 -1.7271729 0.0476074 -3.9417877 0.5527344 -0.0515137 3.8761215 0.5885010 -0.5666504 4.1391945 0.4910889 -0.5263672 2.6425972 1.9133301 0.4528809 -4.5053329 0.9139404 -0.2407227 -3.9988747 2.3255615 0.2097168 -4.4260330 0.5622559 -1.0700684 -4.5362663 -1.2127686 -1.4262695 -0.3806915 -1.4569092 -1.0700684 -0.3688774 -1.4725342 -0.8471680 0.6177444 -1.4805908 -0.1911621 -0.4262466 -1.2872314 -0.0012207 -1.7416039 -0.7104492 0.5986328 0.2015533 0.6956787 0.1801758 -3.8674088 0.6026611 -0.4050293 -2.7008133 -0.2122803 0.4677734 -1.4287567 0.3730469 0.4228516 -0.4155617 0.3880615 -0.0214844 -1.4175110 0.6673584 -0.3801270 -0.7149086 -1.1090088 0.7385254 -4.0828171 -1.1328125 0.4829102 -3.3225670 -0.6115723 0.6062012 -3.6359749 -0.1878662 0.4968262 -3.3977890 -0.0518799 -1.3723145 3.5487938 -1.1678467 -1.2519531 2.3512650 0.2166748 -1.0534668 2.9687996 -1.6270752 -0.5632324 -2.4134140 0.5067139 -0.9133301 -0.6649933 0.5748291 -0.7966309 -1.7704277 0.1873779 0.3659668 4.1504440 0.1258545 0.4414063 2.6314888 -1.8701172 -0.4013672 -4.1051712 -1.6763916 -1.4792480 -4.4976006 -0.9257813 1.2104492 -4.4617462 -0.6370850 0.5300293 1.2878685 0.4990234 -0.0959473 0.2781830 -1.4616699 -0.1508789 2.3431091 -1.3544922 -0.0412598 4.3870811 -0.6168213 -1.7026367 -4.4693375 -0.3665771 0.6049805 -0.7406387 -1.5581055 1.7028809 -4.5383759 0.6715088 0.6118164 -4.4160500 -1.9483643 -0.7707520 -4.5312042 } } phBound { Type BoundBVH AABBMin 1184.5354004 2787.7968750 28.7075691 AABBMax 1191.1826172 2794.5092773 51.2717934 Radius 12.231 Centroid 1187.8590088 2791.1530762 39.9896812 CG 1187.8519287 2791.1970215 39.9890747 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 52 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.84385 } } ComputePolyNeighbors True Vertices 2 { 1187.2561035 2791.7834473 49.2633781 1188.4619141 2790.5227051 30.7159843 } } phBound { Type BoundBVH AABBMin 1264.1998291 2907.1938477 47.6749687 AABBMax 1270.7943115 2913.6743164 59.4333458 Radius 7.47902 Centroid 1267.4970703 2910.4340820 53.5541573 CG 1267.4838867 2910.3872070 53.5538368 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 2.70204 } } ComputePolyNeighbors True Vertices 2 { 1267.5366211 2910.4252930 50.4116173 1267.4575195 2910.4428711 56.6966972 } } phBound { Type BoundBVH AABBMin 1266.7358398 2909.2397461 43.2236977 AABBMax 1268.4201660 2910.9023438 48.0847588 Radius 2.70329 Centroid 1267.5780029 2910.0710449 45.6542282 CG 1267.4808350 2909.8046875 45.6484528 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.565793 } } ComputePolyNeighbors True Vertices 2 { 1267.6151123 2910.0998535 43.8036652 1267.5408936 2910.0422363 47.5047913 } } phBound { Type BoundBVH AABBMin 1266.7930908 2909.4277344 43.6275902 AABBMax 1268.2427979 2910.6621094 47.0559196 Radius 1.96079 Centroid 1267.5179443 2910.0449219 45.3417549 CG 947.1690063 2175.3591309 33.6616211 Margin 0.005 GeometryCenter 1267.5179443 2910.0449219 45.3417549 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 109 { Tri 0 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 20 19 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 20 29 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 13 29 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 20 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 56 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 31 56 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 17 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 57 17 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 17 57 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 49 17 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 13 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 21 13 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 13 14 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 45 22 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 45 14 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 50 45 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 68 52 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 63 52 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 50 51 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 51 64 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 13 3 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 1 64 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 51 14 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 4 1 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 4 14 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 4 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 24 18 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 25 43 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 16 15 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 18 24 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 53 40 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 43 39 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 39 43 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 24 39 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 16 38 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 38 16 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 42 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 70 63 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 27 70 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 48 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 26 28 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 46 55 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 54 47 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 53 54 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 42 39 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 53 55 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 46 65 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 46 48 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 48 64 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 46 47 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 63 64 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 46 28 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 3 2 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 37 3 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 36 31 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 29 31 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 29 36 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 49 60 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 60 59 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 2 3 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 62 3 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 62 11 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 36 34 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 49 38 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 41 40 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 40 41 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 42 58 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 38 58 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 44 58 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 44 42 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 58 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 1 0 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 0 65 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 41 55 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 6 65 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 0 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 6 41 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 2 11 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 11 7 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 66 67 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 59 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 34 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 35 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 32 35 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 33 37 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 32 33 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 33 71 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 62 37 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 61 11 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 69 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 35 59 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 35 58 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 44 41 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 44 23 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 44 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 23 41 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 5 10 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 5 23 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 7 69 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 5 69 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 10 5 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 72 { 0.0347900 0.5485840 0.0514526 -0.3380127 0.5983887 -0.5251770 -0.3552246 0.4689941 -0.3188400 -0.4548340 0.3073730 -0.3373108 -0.4477539 0.5415039 -0.5181656 0.6458740 0.3583984 1.1760406 0.3977051 0.3972168 0.3997726 0.2391357 0.4777832 0.3912468 0.4760742 0.4665527 1.4553032 0.5998535 0.3000488 1.4995117 0.6904297 0.3386230 1.3825340 -0.2349854 0.4165039 1.1607132 -0.1419678 0.4902344 1.1033745 -0.5432129 0.2070313 -1.0817146 -0.4837646 0.3161621 -0.7591858 0.1472168 -0.4785156 -1.5289650 0.1958008 -0.4338379 -1.1331444 -0.0112305 -0.4028320 -1.1405182 0.2811279 -0.6171875 -1.5457611 -0.7248535 -0.0029297 -1.7141647 -0.5843506 0.0737305 -1.2436867 -0.6940918 0.2055664 -1.5178223 -0.5389404 0.3134766 -1.5763130 0.5473633 0.3334961 1.0396004 0.3903809 -0.4182129 -1.3101807 0.4642334 -0.3735352 -1.4805222 0.6369629 0.5981445 -1.4701653 0.3961182 0.5612793 -1.4210396 0.4738770 0.5266113 -1.2066994 -0.4631348 -0.0915527 -0.8516808 -0.3477783 -0.3156738 -1.5042725 -0.2197266 -0.3823242 -1.1342926 -0.5349121 -0.2543945 1.4019928 -0.5576172 -0.0197754 1.7141647 -0.5128174 -0.3569336 1.0436821 -0.2131348 -0.5573730 1.0032921 -0.4467773 -0.2702637 0.7247620 -0.5168457 -0.0534668 0.3543091 0.2139893 -0.4064941 -0.5424919 0.3811035 -0.3232422 -0.8045959 0.6503906 -0.0048828 -0.8655968 0.5822754 -0.1337891 0.7543182 0.5040283 -0.2160645 -0.5507050 0.5828857 -0.3718262 -1.3498878 0.5607910 -0.3483887 1.3880272 -0.5075684 0.4614258 -1.5457077 0.5476074 0.4355469 -1.0639801 0.7025146 0.3244629 -1.2746582 0.2188721 0.4038086 -1.1255035 -0.0583496 -0.4575195 -0.8458748 -0.3114014 0.6171875 -1.3957710 -0.1658936 0.5939941 -0.7800598 -0.1555176 0.5722656 -1.3382225 0.7248535 -0.1242676 -1.3215332 0.6475830 0.0808105 -1.3335152 0.6749268 0.1972656 -1.1066170 -0.1629639 -0.4340820 -1.4628372 0.0476074 -0.5541992 -1.5905418 0.3674316 -0.3989258 1.0635605 -0.0632324 -0.4484863 0.7371063 -0.0388184 -0.4062500 0.0148849 -0.3642578 0.4291992 1.4336967 -0.4591064 0.3564453 1.4252739 -0.0184326 0.4819336 -1.3943062 0.2238770 0.4431152 -0.8474960 0.4371338 0.3222656 -0.3026772 -0.0698242 -0.4589844 1.4075394 -0.3215332 -0.4401855 1.4091606 -0.0864258 0.4826660 -1.5012932 0.2624512 0.5334473 1.0675888 0.2521973 0.4663086 -1.6399803 -0.5385742 0.1811523 1.4120407 } } phBound { Type BoundBVH AABBMin 1304.8828125 2849.5705566 44.5418358 AABBMax 1307.2027588 2851.9338379 57.5503883 Radius 6.71174 Centroid 1306.0427246 2850.7521973 51.0461121 CG 1306.1123047 2850.4775391 50.2140350 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 2 { Capsule 0 { MaterialIndex 1 CenterTop 2 CenterBottom 3 Radius 0.6739 } Capsule 1 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.480797 } } ComputePolyNeighbors True Vertices 4 { 1306.0428467 2850.4978027 49.5110779 1306.5103760 2851.2258301 57.0177002 1305.7741699 2850.4055176 49.0606689 1306.2253418 2850.5173340 45.2931824 } } phBound { Type BoundBVH AABBMin 1305.1182861 2849.8557129 44.9822159 AABBMax 1307.3594971 2851.4392090 50.3601913 Radius 3.01882 Centroid 1306.2388916 2850.6474609 47.6712036 CG 990.6061401 2162.1052246 36.8337288 Margin 0.005 GeometryCenter 1306.2388916 2850.6474609 47.6712036 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 115 { Tri 0 { Vertices 43 35 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 45 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 46 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 34 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 19 50 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 45 34 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 34 20 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 60 47 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 60 20 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 18 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 35 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 38 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 38 43 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 48 49 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 45 46 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 48 43 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 48 6 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 6 48 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 44 38 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 36 37 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 38 49 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 51 36 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 36 51 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 46 42 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 9 51 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 10 7 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 1 20 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 50 14 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 13 1 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 14 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 13 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 23 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 12 56 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 2 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 20 1 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 0 61 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 55 2 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 2 55 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 55 66 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 54 55 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 39 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 56 39 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 56 64 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 12 24 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 24 57 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 64 56 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 23 24 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 57 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 66 2 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 9 39 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 39 9 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 39 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 65 8 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 65 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 8 7 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 6 42 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 46 18 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 49 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 16 18 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 60 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 68 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 47 60 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 0 68 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 0 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 0 55 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 54 67 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 49 5 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 40 42 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 40 3 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 5 25 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 10 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 7 10 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 7 27 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 58 54 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 27 7 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 15 18 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 25 26 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 58 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 67 58 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 41 40 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 18 15 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 3 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 17 41 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 17 16 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 16 68 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 29 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 67 29 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 67 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 3 41 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 22 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 5 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 52 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 26 25 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 26 28 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 30 58 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 52 28 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 32 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 31 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 31 32 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 31 28 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 52 53 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 53 63 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 62 29 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 62 31 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 62 69 29 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 70 { 0.4057617 -0.4006348 -2.2382736 0.5369873 -0.4248047 -2.2754517 0.7912598 -0.0673828 -2.3003159 -0.8922119 -0.1145020 0.1690178 -0.6132813 -0.0688477 2.0781593 -0.7467041 0.0864258 -0.0124359 -0.6877441 -0.0017090 -1.9478378 0.0053711 0.2980957 -1.1795998 0.3043213 0.2702637 -1.6340103 0.1350098 0.5310059 -2.0961342 -0.1525879 0.4328613 -1.8062706 1.0384521 -0.1564941 -2.5792656 0.9468994 0.0095215 -2.5428276 0.7440186 -0.3713379 -2.5259209 0.5889893 -0.5708008 -2.5845184 -0.5253906 -0.6503906 0.5887947 -0.3881836 -0.6418457 0.0359039 -0.4144287 -0.6269531 2.1904259 -0.7950439 -0.4785156 -0.3974953 -0.1452637 -0.7917480 -2.6020813 -0.1198730 -0.6477051 -2.5746689 -0.1865234 -0.6379395 -2.6889877 -0.4213867 0.1545410 2.0939140 1.1206055 0.2958984 -2.5825462 0.9523926 0.3813477 -2.5859947 -0.5611572 0.1599121 0.7004051 -0.3593750 0.1684570 0.7550621 -0.0761719 0.1110840 0.0095596 -0.0814209 0.1367188 1.8085670 0.0695801 -0.5048828 1.9475060 0.0461426 -0.3344727 1.2915382 0.1258545 -0.2414551 2.0023270 0.1252441 -0.1318359 1.8975258 -1.0479736 -0.5566406 -2.6142273 -0.4589844 -0.6315918 -2.6147995 -1.1206055 -0.3276367 -2.5974007 -0.2625732 0.5888672 -2.5186157 -0.3314209 0.7539063 -2.6276855 -0.8636475 0.0300293 -2.5530853 0.7015381 0.7917480 -2.6003571 -0.9086914 -0.2543945 0.1709061 -0.7043457 -0.4204102 1.8894005 -0.7131348 -0.1628418 -1.9338036 -0.9664307 -0.2348633 -2.5517731 -0.8985596 0.3010254 -2.5967445 -0.8604736 -0.3981934 -2.5609627 -0.6806641 -0.3137207 -2.2262917 -0.5106201 -0.4467773 -2.4061852 -0.7905273 -0.1445313 -2.3640823 -0.7432861 0.0361328 -2.3863220 0.2998047 -0.6589355 -2.6212845 -0.2282715 0.4201660 -2.1310120 -0.2406006 0.2192383 2.1366730 -0.1582031 0.1997070 2.2211189 0.1669922 0.1855469 -1.1846886 0.4301758 -0.0939941 -1.7986374 0.8847656 0.4023438 -2.4868584 1.0701904 0.4799805 -2.5923958 -0.0882568 -0.0151367 0.6670036 -0.0100098 -0.5981445 2.1187820 -0.1335449 -0.5532227 -2.1621132 0.1394043 -0.5510254 -2.2235031 0.2043457 -0.4816895 2.5534134 0.1639404 -0.2053223 2.1865692 0.9753418 0.6884766 -2.6008492 0.4659424 0.4035645 -2.0676537 0.7996826 0.3876953 -2.3347015 0.0079346 -0.2724609 -0.0698013 -0.1206055 -0.5285645 0.0389404 0.1306152 -0.6335449 2.6889877 } } phBound { Type BoundBVH AABBMin 1274.1147461 2871.2998047 44.0894547 AABBMax 1276.1230469 2873.5126953 56.1570435 Radius 6.21604 Centroid 1275.1188965 2872.4062500 50.1232491 CG 1275.1909180 2872.4301758 49.3387337 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 2 { Capsule 0 { MaterialIndex 1 CenterTop 2 CenterBottom 3 Radius 0.5642 } Capsule 1 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.402531 } } ComputePolyNeighbors True Vertices 4 { 1275.3021240 2872.3903809 48.6691055 1275.4698486 2872.9836426 55.7209854 1275.2791748 2872.1496582 48.2487907 1274.9586182 2872.5100098 44.7249489 } } phBound { Type BoundBVH AABBMin 1274.1562500 2871.5712891 44.4041138 AABBMax 1275.8363037 2873.5190430 49.4214020 Radius 2.81911 Centroid 1274.9963379 2872.5451660 46.9127579 CG 959.4897461 2161.1860352 35.7085838 Margin 0.005 GeometryCenter 1274.9963379 2872.5451660 46.9127579 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 115 { Tri 0 { Vertices 35 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 38 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 48 43 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 38 43 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 48 49 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 48 6 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 6 48 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 44 38 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 36 37 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 38 49 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 51 36 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 36 51 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 45 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 43 35 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 45 34 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 45 46 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 46 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 46 42 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 18 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 34 20 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 34 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 60 47 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 60 20 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 19 50 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 1 20 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 20 1 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 39 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 56 64 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 56 39 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 64 56 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 24 57 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 57 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 12 24 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 23 24 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 50 14 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 13 1 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 2 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 13 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 14 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 12 56 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 23 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 9 39 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 39 9 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 39 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 66 2 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 55 2 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 2 55 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 0 61 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 65 8 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 55 66 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 9 51 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 65 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 10 7 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 54 55 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 8 7 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 40 42 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 46 18 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 16 18 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 49 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 49 5 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 54 67 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 0 55 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 47 60 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 0 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 0 68 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 60 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 68 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 40 3 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 6 42 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 5 25 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 10 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 7 10 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 7 27 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 58 54 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 27 7 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 15 18 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 25 26 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 58 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 67 58 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 41 40 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 18 15 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 3 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 3 41 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 5 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 22 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 52 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 26 25 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 26 28 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 17 41 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 17 16 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 16 68 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 29 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 67 29 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 30 58 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 67 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 52 28 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 32 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 31 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 31 32 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 31 28 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 52 53 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 53 63 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 62 29 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 62 31 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 62 69 29 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 70 { 0.2828369 0.2470703 -2.0860367 0.3271484 0.3479004 -2.1257133 0.0920410 0.6308594 -2.1308594 -0.0178223 -0.7219238 0.2149696 0.1716309 -0.4719238 1.9949799 -0.1641846 -0.5620117 0.0555458 -0.2490234 -0.5483398 -1.7602501 -0.2741699 0.0830078 -1.0392151 -0.2269287 0.3154297 -1.4731293 -0.5137939 0.2314453 -1.8828773 -0.4713135 -0.0202637 -1.6116600 0.1927490 0.8090820 -2.4037132 0.0423584 0.7714844 -2.3560791 0.3070068 0.5249023 -2.3611488 0.4291992 0.3557129 -2.4257736 0.5294189 -0.5383301 0.5614929 0.5039063 -0.4296875 0.0420570 0.6738281 -0.4313965 2.0568008 0.2469482 -0.7265625 -0.3416481 0.4473877 -0.2858887 -2.4389496 0.3392334 -0.2338867 -2.4041786 0.3070068 -0.2866211 -2.5086441 0.0344238 -0.2680664 2.0202408 -0.1542969 0.9738770 -2.3779106 -0.2595215 0.8562012 -2.3712044 -0.1214600 -0.3906250 0.7220078 -0.0799561 -0.2253418 0.7686272 -0.0375977 -0.0144043 0.0611572 0.0971680 0.0007324 1.7438774 0.6586914 -0.0153809 1.8261223 0.4593506 -0.0024414 1.2254601 0.4632568 0.0876465 1.8939476 0.3657227 0.1101074 1.8035965 0.0623779 -0.9650879 -2.4118195 0.2496338 -0.5048828 -2.4321671 -0.1362305 -0.9738770 -2.3786888 -0.6827393 -0.0805664 -2.2637787 -0.8400879 -0.1013184 -2.3528061 -0.3651123 -0.6882324 -2.3192825 -0.6455078 0.7421875 -2.3503113 0.0913086 -0.7656250 0.2076416 0.4188232 -0.6232910 1.7968903 -0.1235352 -0.6035156 -1.7575188 -0.1738281 -0.8288574 -2.3335495 -0.5948486 -0.6579590 -2.3406448 -0.0202637 -0.7785645 -2.3559265 -0.0205078 -0.6123047 -2.0419083 0.1076660 -0.5051270 -2.2232399 -0.1923828 -0.6655273 -2.1563530 -0.3295898 -0.5883789 -2.1660194 0.4346924 0.1025391 -2.4589081 -0.5057373 -0.0866699 -1.9140587 0.0249023 -0.1076660 2.0599976 0.0657959 -0.0446777 2.1355400 -0.1491699 0.1894531 -1.0556679 0.0792236 0.3369141 -1.6549263 -0.2824707 0.8068848 -2.2753944 -0.3142090 0.9729004 -2.3733101 0.1187744 -0.0463867 0.6671257 0.7315674 -0.0986328 1.9818077 0.2958984 -0.2214355 -2.0118980 0.3476563 -0.0007324 -2.0759010 0.7218018 0.1032715 2.3905373 0.4584961 0.1276855 2.0676384 -0.5034180 0.9414063 -2.3645782 -0.3372803 0.4716797 -1.8732109 -0.2756348 0.7360840 -2.1321068 0.2824707 -0.0302734 -0.0412788 0.4707031 -0.1889648 0.0460358 0.8399658 0.0117188 2.5086441 } } phBound { Type BoundBVH AABBMin 1299.0656738 2818.1345215 43.5204811 AABBMax 1302.1673584 2821.6750488 55.1507645 Radius 6.27334 Centroid 1300.6164551 2819.9047852 49.3356247 CG 991.7495117 2151.2331543 33.5483246 Margin 0.005 GeometryCenter 1300.6164551 2819.9047852 49.3356247 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 132 { Tri 0 { Vertices 65 37 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 35 64 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 29 36 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 37 73 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 73 37 76 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 76 37 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 73 46 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 76 43 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 73 43 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 46 20 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 46 43 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 45 21 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 43 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 43 75 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 45 10 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 36 29 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 73 74 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 20 29 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 30 29 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 22 30 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 46 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 20 21 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 9 22 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 17 71 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 29 30 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 36 71 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 30 22 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 51 17 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 16 54 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 17 16 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 64 35 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 59 35 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 59 58 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 59 57 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 62 59 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 57 2 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 12 13 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 11 12 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 10 45 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 44 61 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 2 1 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 2 61 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 11 61 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 63 61 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 12 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 63 13 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 34 58 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 55 57 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 2 57 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 0 8 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 10 1 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 21 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 1 10 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 55 56 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 58 34 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 54 34 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 2 56 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 3 2 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 2 3 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 55 18 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 17 51 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 14 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 54 16 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 15 4 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 34 54 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 55 34 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 4 18 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 56 18 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 49 51 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 22 9 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 28 49 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 9 38 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 38 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 38 0 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 8 0 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 72 0 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 50 14 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 49 50 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 5 4 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 4 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 7 68 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 19 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 68 72 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 68 3 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 14 15 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 15 14 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 6 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 72 68 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 28 33 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 6 5 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 33 47 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 50 49 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 33 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 66 5 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 5 14 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 50 47 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 40 14 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 47 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 6 66 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 7 6 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 70 68 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 68 70 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 72 25 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 72 52 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 52 28 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 26 28 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 39 67 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 42 40 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 40 47 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 41 47 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 117 { Vertices 32 48 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 118 { Vertices 31 32 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 119 { Vertices 33 27 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 120 { Vertices 66 42 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 121 { Vertices 40 42 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 122 { Vertices 70 66 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 123 { Vertices 67 69 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 124 { Vertices 69 23 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 125 { Vertices 25 70 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 126 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 127 { Vertices 24 52 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 128 { Vertices 24 53 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 129 { Vertices 26 52 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 130 { Vertices 26 60 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 131 { Vertices 31 27 60 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 77 { 0.4119873 1.0900879 -4.4130707 0.7675781 0.9384766 -4.8230057 0.2810059 1.2666016 -4.9325829 -0.1873779 0.9340820 -0.7604980 -1.2658691 0.1896973 -0.1784706 -1.1921387 -0.3576660 0.5447502 -1.2697754 0.1770020 1.3146782 -1.0509033 0.6379395 0.3602600 0.6190186 0.7170410 -3.6436844 0.7075195 0.2128906 -3.6483536 0.9017334 0.6938477 -4.8088150 0.7520752 1.3935547 -5.2844925 0.3250732 1.5026855 -5.5449677 0.5305176 1.7702637 -5.6664047 -0.7919922 -0.7958984 1.0922852 -1.1539307 -0.2253418 -0.9218140 -0.9157715 -0.4597168 -1.3955154 -0.1423340 -0.6950684 -3.6947021 -0.9587402 0.6826172 -1.5591660 -0.5678711 0.9645996 -1.0348053 0.1833496 -0.9123535 -4.5296555 0.8835449 -0.1174316 -4.8062973 0.4899902 -0.4672852 -4.1421776 -1.0677490 0.0146484 5.5063438 -0.6588135 0.0822754 5.4684410 -0.5980225 0.5695801 2.7075882 -0.1441650 -0.1740723 4.7364159 -0.0013428 -0.4440918 3.3390160 0.2635498 0.0837402 0.9302521 -0.0992432 -0.8840332 -4.5634270 0.1553955 -0.7883301 -4.1049919 0.0418701 -0.8666992 5.1752701 -0.1422119 -1.0517578 4.5483360 -0.0705566 -0.6887207 3.3021889 -1.0006104 0.3315430 -3.7854156 -1.1586914 0.2863770 -4.9650993 -0.9410400 -0.1342773 -4.4944458 -1.2518311 -0.3264160 -5.4511986 0.1588135 0.4653320 0.6997757 -1.3226318 -1.1000977 5.1921577 -1.2761230 -0.9973145 3.7318802 -0.7730713 -1.4882813 5.1271286 -1.5223389 -0.5563965 4.7227631 1.0434570 -1.4008789 -5.5111961 1.4656982 1.0610352 -5.5054474 1.1824951 -0.5183105 -5.3814964 0.6083984 -1.2788086 -5.3915558 -0.5898438 -1.1477051 3.6699066 -0.3654785 -1.6425781 5.7477760 0.1306152 -0.5268555 0.4057121 -0.3265381 -0.7995605 1.0953407 0.2225342 -0.5832520 -2.2601128 -0.4006348 0.1770020 4.3182182 -0.2368164 -0.0991211 5.3789825 -0.9580078 -0.1218262 -3.0708199 -0.8449707 0.8891602 -3.5080566 -0.3801270 1.0554199 -3.7396088 -0.7294922 1.2355957 -4.9465942 -0.8629150 1.0615234 -4.7317505 -1.1571045 1.4445801 -5.7759819 0.0898438 -0.4985352 5.0529366 1.3182373 1.0178223 -5.4612579 -0.9465332 1.6560059 -5.8151436 0.9671631 1.6547852 -5.6750259 -1.5507813 -0.1557617 -5.6421509 -1.2502441 -0.7180176 -5.6033516 -1.4729004 -0.0332031 3.4295502 -1.3830566 -0.3078613 5.5406532 -0.6572266 0.8393555 0.1700249 -1.2980957 -0.1899414 5.8151398 -1.2297363 0.2175293 3.9614601 -0.6159668 -0.4851074 -4.0025978 -0.1152344 0.7490234 0.4520569 0.0059814 -1.3933105 -5.2498245 0.0491943 -1.1511230 -4.9207268 1.5509033 -0.2866211 -5.5133514 0.1173096 -1.7702637 -5.4402390 } } phBound { Type BoundBVH AABBMin 1285.9390869 2810.2114258 42.9172554 AABBMax 1309.2547607 2831.5649414 80.0677795 Radius 24.3914 Centroid 1297.5969238 2820.8881836 61.4925156 CG 1300.3918457 2819.9506836 56.3095932 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_SEE_THROUGH MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 5 { Capsule 0 { MaterialIndex 1 CenterTop 8 CenterBottom 9 Radius 0.937125 } Capsule 1 { MaterialIndex 1 CenterTop 6 CenterBottom 7 Radius 0.791212 } Capsule 2 { MaterialIndex 1 CenterTop 4 CenterBottom 5 Radius 0.262268 } Capsule 3 { MaterialIndex 1 CenterTop 2 CenterBottom 3 Radius 0.192011 } Capsule 4 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 6.56077 } } ComputePolyNeighbors True Vertices 10 { 1296.7053223 2821.4455566 71.4723053 1298.4885254 2820.3308105 66.4892426 1301.3920898 2819.2558594 56.2399521 1304.2546387 2819.2836914 58.4226456 1300.6354980 2819.5571289 54.7080574 1301.5134277 2819.7934570 55.4967155 1299.9196777 2819.3425293 53.9648247 1299.9763184 2819.7341309 51.5571861 1300.6728516 2820.3127441 43.9698753 1299.8981934 2819.8474121 50.7562447 } } phBound { Type BoundBVH AABBMin 1300.4104004 2774.5942383 46.1941757 AABBMax 1303.2667236 2777.2770996 55.6531296 Radius 5.11928 Centroid 1301.8386230 2775.9355469 50.9236526 CG 996.2824097 2124.6064453 41.5163918 Margin 0.005 GeometryCenter 1301.8386230 2775.9355469 50.9236526 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 117 { Tri 0 { Vertices 32 31 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 36 29 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 32 37 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 27 29 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 27 36 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 29 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 28 27 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 28 54 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 28 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 68 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 55 28 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 61 62 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 61 11 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 62 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 37 31 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 11 61 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 10 62 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 4 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 43 62 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 58 18 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 17 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 17 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 58 44 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 62 43 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 44 58 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 17 18 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 47 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 32 29 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 22 60 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 30 22 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 31 60 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 4 11 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 4 3 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 47 29 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 47 26 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 54 59 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 54 55 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 55 17 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 59 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 44 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 43 10 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 22 30 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 23 30 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 46 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 46 23 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 7 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 47 59 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 8 7 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 60 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 60 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 5 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 3 6 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 43 6 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 44 6 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 45 8 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 24 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 25 53 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 60 53 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 24 46 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 7 14 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 38 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 38 8 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 8 45 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 66 1 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 6 5 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 66 45 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 25 24 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 48 49 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 40 48 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 40 24 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 9 14 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 14 9 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 20 19 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 20 9 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 53 25 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 50 51 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 53 52 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 52 53 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 66 5 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 52 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 65 1 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 40 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 13 57 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 56 40 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 40 56 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 48 50 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 50 48 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 56 35 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 35 56 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 51 42 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 51 50 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 35 64 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 51 64 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 64 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 34 63 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 63 42 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 12 13 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 19 12 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 12 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 39 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 38 39 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 0 39 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 38 1 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 2 1 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 65 52 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 2 65 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 41 2 42 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 69 { 1.2186279 -0.0458984 4.2079315 1.2512207 0.2041016 2.4073524 1.0281982 0.1411133 4.0368919 -0.2008057 0.9887695 -1.2540588 -0.9876709 0.5859375 -2.3269157 -0.0994873 0.8125000 0.5738144 0.4892578 1.0151367 -0.5370789 0.6821289 -1.1179199 0.0162621 1.1298828 -0.0744629 -0.6366844 0.6534424 -1.1201172 1.1634560 -0.6431885 1.0390625 -2.7167664 -0.8585205 0.8063965 -3.8651237 0.2473145 -1.3339844 3.8870468 -0.0767822 -1.2841797 4.2170792 -0.0106201 -1.3413086 2.6144028 1.4281006 0.0463867 -4.5780373 1.0490723 0.6677246 -4.6290016 0.9675293 0.7656250 -3.1391411 0.5614014 1.1215820 -4.3815880 0.8371582 -1.2297363 2.5391922 1.2673340 -0.7724609 2.7686005 1.0560303 -1.2299805 4.6612358 -0.9403076 -0.6977539 -0.5379524 -0.4648438 -1.2678223 -0.6022720 -0.6870117 -0.8422852 0.1552162 -0.8189697 -0.2634277 0.5167542 0.2374268 -0.9904785 -3.1310120 -0.0587158 -1.0021973 -3.7974625 0.8663330 -0.6794434 -3.7299461 -0.5823975 -0.8933105 -3.0221138 -0.8577881 -0.5461426 -1.6282310 -1.0894775 0.1640625 -3.3839417 -1.0305176 -0.4047852 -2.9788475 -0.6197510 -0.2880859 4.4660912 -0.5852051 0.0100098 4.1161690 -0.7369385 0.0903320 3.8013840 -1.2141113 -1.0563965 -4.4708824 -1.4282227 -0.6906738 -4.3740349 1.2983398 -0.2402344 2.2903252 1.3258057 -0.5900879 4.4239845 -0.4250488 -1.0034180 2.2788544 1.0662842 0.0544434 4.7294769 0.2947998 0.5161133 4.3280106 0.0640869 1.0998535 -1.6267776 0.4255371 1.1723633 -2.0558319 0.8143311 0.8276367 -0.8929558 0.1069336 -1.2419434 -0.6207123 0.2769775 -1.0000000 -1.7101212 -0.6599121 -0.5402832 2.6791611 -0.6604004 -0.2644043 2.3607445 -0.5856934 0.0895996 3.3149757 -0.1690674 0.4545898 3.0993576 0.1756592 0.6728516 2.4075012 -0.5612793 0.3359375 1.6783218 0.6868896 -0.6997070 -3.0549278 1.0085449 -0.1308594 -3.0714798 -0.7749023 -0.5109863 4.2356644 -0.5683594 -0.9921875 3.9618225 0.0816650 1.3415527 -3.9163780 0.9586182 -0.2194824 -2.0407333 -1.0035400 -0.0122070 -0.8078728 -1.3504639 0.4692383 -4.7268639 -0.6051025 1.0700684 -3.9086838 -0.2199707 0.3542480 4.3518219 -0.7514648 0.3437500 3.7557907 0.6782227 0.7006836 2.3520355 0.6567383 0.6064453 1.9827995 -0.5382080 1.1467285 -4.6172409 0.7631836 -1.2036133 -4.7294769 } } phBound { Type BoundBVH AABBMin 1298.6179199 2771.3234863 44.1114998 AABBMax 1307.7685547 2777.7956543 109.5265350 Radius 33.1841 Centroid 1303.1932373 2774.5595703 76.8190155 CG 1302.0338135 2775.0605469 53.6910057 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 4 { Capsule 0 { MaterialIndex 0 CenterTop 5 CenterBottom 6 Radius 0.606769 } Capsule 1 { MaterialIndex 0 CenterTop 3 CenterBottom 4 Radius 0.606769 } Sphere 2 { MaterialIndex 0 Center 2 Radius 1.8504 } Capsule 3 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.41632 } } ComputePolyNeighbors True Vertices 7 { 1305.7316895 2773.3264160 108.0066071 1301.7277832 2775.7927246 46.3441582 1301.7181396 2775.9187012 45.9618988 1299.4918213 2774.8178711 45.8940277 1300.2347412 2775.0883789 46.0437393 1302.7227783 2775.1791992 45.7652817 1303.1114502 2774.5131836 45.5546875 } } phBound { Type BoundBVH AABBMin 1208.7681885 2927.5292969 47.4361801 AABBMax 1226.0596924 2944.8208008 64.7276764 Radius 14.9749 Centroid 1217.4139404 2936.1750488 56.0819283 CG 1217.4105225 2936.1889648 56.0820007 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 52 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Sphere 0 { MaterialIndex 0 Center 0 Radius 8.64575 } } ComputePolyNeighbors True Vertices 1 { 1217.4139404 2936.1750488 56.0819283 } } phBound { Type BoundBVH AABBMin 1209.5375977 2930.3552246 39.6275368 AABBMax 1224.1223145 2939.6437988 60.9547653 Radius 13.7281 Centroid 1216.8299561 2934.9995117 50.2911530 CG 1217.3446045 2934.8723145 49.2703285 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 25 { Capsule 0 { MaterialIndex 1 CenterTop 48 CenterBottom 49 Radius 0.71895 } Capsule 1 { MaterialIndex 1 CenterTop 46 CenterBottom 47 Radius 0.475912 } Capsule 2 { MaterialIndex 1 CenterTop 44 CenterBottom 45 Radius 0.357052 } Capsule 3 { MaterialIndex 0 CenterTop 42 CenterBottom 43 Radius 0.297567 } Capsule 4 { MaterialIndex 1 CenterTop 40 CenterBottom 41 Radius 0.328387 } Capsule 5 { MaterialIndex 1 CenterTop 38 CenterBottom 39 Radius 0.542111 } Capsule 6 { MaterialIndex 0 CenterTop 36 CenterBottom 37 Radius 0.345693 } Capsule 7 { MaterialIndex 0 CenterTop 34 CenterBottom 35 Radius 0.915618 } Capsule 8 { MaterialIndex 0 CenterTop 32 CenterBottom 33 Radius 0.292318 } Capsule 9 { MaterialIndex 0 CenterTop 30 CenterBottom 31 Radius 0.256874 } Capsule 10 { MaterialIndex 1 CenterTop 28 CenterBottom 29 Radius 0.227144 } Capsule 11 { MaterialIndex 1 CenterTop 26 CenterBottom 27 Radius 0.735836 } Capsule 12 { MaterialIndex 0 CenterTop 24 CenterBottom 25 Radius 0.584826 } Capsule 13 { MaterialIndex 0 CenterTop 22 CenterBottom 23 Radius 0.418236 } Capsule 14 { MaterialIndex 0 CenterTop 20 CenterBottom 21 Radius 0.307199 } Capsule 15 { MaterialIndex 0 CenterTop 18 CenterBottom 19 Radius 0.313856 } Capsule 16 { MaterialIndex 0 CenterTop 16 CenterBottom 17 Radius 0.399605 } Capsule 17 { MaterialIndex 0 CenterTop 14 CenterBottom 15 Radius 0.19596 } Capsule 18 { MaterialIndex 1 CenterTop 12 CenterBottom 13 Radius 1.64929 } Capsule 19 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.263963 } Capsule 20 { MaterialIndex 1 CenterTop 8 CenterBottom 9 Radius 0.225813 } Capsule 21 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.28373 } Capsule 22 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.258634 } Capsule 23 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.181784 } Capsule 24 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.502896 } } ComputePolyNeighbors True Vertices 50 { 1223.2785645 2938.6484375 60.2759056 1218.4484863 2935.4365234 49.2063789 1220.6436768 2934.2048340 52.0700455 1219.2479248 2935.9025879 50.3676682 1218.3957520 2936.5056152 49.0514069 1218.1672363 2936.6545410 50.5834503 1222.0102539 2937.5107422 51.7277412 1219.8059082 2935.5317383 47.5255852 1219.3834229 2930.7038574 50.5700417 1219.0447998 2932.3557129 47.7374382 1218.0845947 2936.7492676 51.0532608 1217.4403076 2936.6970215 53.7645798 1218.4722900 2935.0805664 47.7975922 1215.7908936 2934.6909180 51.8294220 1216.8348389 2933.4484863 50.6246452 1215.8980713 2934.0051270 53.3581886 1217.5688477 2935.3491211 48.8009758 1213.8061523 2936.1518555 56.2460518 1215.0217285 2934.8107910 49.5800667 1211.3537598 2931.9743652 49.9606285 1215.2734375 2934.9370117 50.0485764 1211.0766602 2931.9233398 53.9251022 1214.9803467 2935.3398438 49.4542046 1210.3128662 2934.8984375 50.8682137 1214.0999756 2935.7707520 51.9314270 1210.5482178 2933.5974121 55.9315338 1221.1861572 2934.5112305 49.7405930 1219.2801514 2934.9145508 45.3592758 1219.0130615 2932.6196289 47.7220688 1218.7261963 2934.0424805 47.1495972 1218.8041992 2932.8046875 50.0887909 1218.7170410 2933.9746094 47.5174103 1219.0050049 2939.1474609 48.2592278 1218.0853271 2937.1181641 46.3054390 1218.4484863 2935.8115234 49.7121506 1218.4819336 2935.3242188 46.3002090 1217.9118652 2934.7365723 47.8989449 1216.8840332 2933.4060059 50.1803322 1217.6953125 2935.0888672 45.5325546 1215.3283691 2934.9667969 49.7660980 1216.2042236 2934.7932129 46.8841248 1213.7640381 2935.4948730 46.9988785 1218.7821045 2933.8854980 47.3709373 1218.5928955 2934.5783691 46.3557930 1217.3670654 2938.1955566 48.7159691 1218.2596436 2935.6174316 44.2107353 1217.4965820 2934.4648438 45.8176460 1216.6572266 2932.4912109 45.8464165 1218.8179932 2934.9177246 40.4130020 1218.3895264 2935.0744629 45.0817032 } } phBound { Type BoundBVH AABBMin 1217.5181885 2933.9196777 40.3778915 AABBMax 1220.3710938 2936.2758789 45.4164925 Radius 3.12563 Centroid 1218.9445801 2935.0976563 42.8971939 CG 910.6877441 2194.8688965 35.7653694 Margin 0.005 GeometryCenter 1218.9445801 2935.0976563 42.8971939 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 113 { Tri 0 { Vertices 43 62 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 62 43 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 53 62 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 45 46 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 43 65 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 43 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 65 12 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 65 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 44 11 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 11 44 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 46 45 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 18 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 21 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 18 21 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 53 19 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 19 53 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 20 53 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 53 26 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 53 46 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 22 16 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 15 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 23 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 23 21 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 34 24 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 21 26 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 2 1 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 14 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 14 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 14 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 29 14 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 54 55 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 29 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 0 59 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 14 59 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 58 56 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 58 55 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 54 56 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 50 47 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 24 50 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 50 24 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 49 50 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 50 61 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 50 69 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 50 8 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 49 8 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 29 9 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 49 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 56 28 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 28 9 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 28 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 26 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 5 46 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 35 25 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 34 26 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 13 14 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 46 11 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 29 42 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 47 48 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 47 24 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 52 48 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 51 48 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 24 34 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 11 13 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 3 11 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 5 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 35 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 52 34 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 25 63 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 52 63 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 64 13 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 42 41 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 41 42 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 33 42 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 33 29 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 51 33 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 30 33 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 63 68 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 4 6 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 6 64 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 4 3 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 64 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 5 4 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 5 27 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 57 25 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 25 57 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 6 41 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 39 41 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 71 40 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 38 39 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 39 38 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 39 27 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 27 38 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 67 57 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 30 51 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 33 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 41 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 68 60 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 30 60 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 41 32 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 36 37 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 72 41 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 71 41 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 37 66 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 32 70 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 70 32 31 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 73 { 0.2553711 -0.5852051 -2.0951576 0.1718750 -0.7941895 -1.9024620 0.2900391 -1.1779785 -2.1404495 -0.9290771 -0.2907715 0.4306412 -0.9420166 -0.3662109 0.8626289 -0.9626465 -0.0932617 -0.0050392 -0.7041016 -0.5917969 0.7775841 1.2359619 0.9824219 -2.3353729 0.6334229 0.7697754 -2.3978119 0.8162842 0.4882813 -2.0521736 1.4265137 0.7578125 -2.2768593 -0.3889160 -0.5886230 -1.2354889 -0.1412354 -0.6042480 -1.7331429 -0.1286621 -0.5168457 -0.9080772 0.3684082 -0.5253906 -1.7189941 -0.7041016 0.6718750 -2.4438705 -0.3935547 0.5710449 -2.4303360 -0.5686035 1.0710449 -2.5193024 -1.0031738 0.3891602 -2.4492531 -1.3592529 0.0593262 -2.4806252 -0.8488770 0.1726074 -2.0838547 -0.6236572 0.5114746 -1.8917770 0.0435791 0.4177246 -2.3117676 -0.3941650 0.3491211 -1.9681320 -0.0640869 0.2780762 -1.5519066 -0.9074707 0.3454590 0.3825035 -0.8343506 0.2402344 -1.2297211 -1.1683350 0.2563477 1.5000763 1.1271973 0.2770996 -2.2462540 0.4731445 0.2265625 -1.6876221 0.0352783 0.4924316 0.8249512 -0.0245361 0.5773926 1.9865036 0.2434082 0.3962402 1.1829681 0.1201172 0.0170898 0.8958473 -0.5236816 0.5173340 -1.2424088 -0.8206787 0.4943848 -0.9911995 0.3870850 0.1530762 2.2014198 0.4693604 0.0122070 1.9099159 -1.3322754 0.1057129 2.1026878 -0.9313965 -0.4523926 1.6300240 -1.4263916 -0.0383301 2.3539772 0.0980225 -0.3398438 1.2463264 0.1990967 -0.3022461 -0.9039230 -0.6743164 -0.7067871 -2.2407951 -0.4349365 -0.6889648 -1.9882011 -0.6520996 -0.4711914 -1.9456787 -0.8077393 -0.2014160 -1.2986183 0.2994385 0.3276367 -1.4841614 0.1083984 0.2402344 -0.6808548 0.5185547 0.5996094 -2.3473701 0.4230957 0.5039063 -1.9031563 0.0054932 0.3618164 -0.3156891 -0.3612061 0.5166016 -0.3410645 -0.9168701 -0.0400391 -1.7270699 0.4095459 -0.1303711 -1.9101524 0.4960938 -0.2961426 -1.6978493 0.4716797 -0.0280762 -2.1087685 -0.8063965 0.6140137 1.0719299 1.1877441 -0.4941406 -2.1391411 1.0258789 -0.7321777 -2.1080780 -0.4241943 0.5803223 1.7515945 0.2395020 0.5144043 -2.2819328 -1.0511475 -0.1394043 -2.2071915 -0.6164551 0.5283203 0.8344841 -0.5241699 -0.4790039 0.4877701 -0.0654297 -0.8666992 -2.1455994 0.6483154 -0.4833984 2.5192986 -0.8934326 0.6716309 1.8639374 -0.4084473 0.6833496 1.2694702 0.0333252 1.1782227 -2.4411011 0.1004639 0.3474121 2.2410965 -0.6185303 -0.4392090 2.1789665 0.2276611 -0.4812012 2.3753548 } } phBound { Type BoundBVH AABBMin 1234.3170166 2893.1845703 44.5218849 AABBMax 1236.7307129 2895.1721191 59.0751648 Radius 7.44269 Centroid 1235.5239258 2894.1782227 51.7985229 CG 1235.5410156 2894.3378906 50.8457870 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 2 { Capsule 0 { MaterialIndex 1 CenterTop 2 CenterBottom 3 Radius 0.6643 } Capsule 1 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.473948 } } ComputePolyNeighbors True Vertices 4 { 1235.6765137 2894.4233398 50.0391083 1235.0187988 2893.8803711 58.5563507 1235.9564209 2894.4294434 49.5280075 1235.4993896 2894.4602051 45.2531815 } } phBound { Type BoundBVH AABBMin 1234.2978516 2893.5349121 44.9004135 AABBMax 1236.5980225 2895.0551758 51.0025215 Radius 3.34805 Centroid 1235.4479980 2894.2949219 47.9514694 CG 972.2702637 2277.8122559 32.9105453 Margin 0.005 GeometryCenter 1235.4479980 2894.2949219 47.9514694 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 115 { Tri 0 { Vertices 57 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 39 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 64 56 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 56 64 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 24 57 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 56 39 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 9 39 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 39 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 39 9 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 65 8 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 65 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 23 24 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 23 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 12 24 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 12 56 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 14 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 13 1 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 50 14 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 13 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 2 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 66 2 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 55 2 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 2 55 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 55 66 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 54 55 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 44 38 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 36 37 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 38 49 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 51 36 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 36 51 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 9 51 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 10 7 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 8 7 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 35 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 38 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 38 43 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 48 49 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 48 43 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 48 6 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 6 48 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 46 42 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 0 61 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 1 20 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 20 1 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 19 50 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 60 20 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 60 47 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 34 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 45 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 43 35 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 34 20 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 45 34 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 46 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 45 46 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 18 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 54 67 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 0 55 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 0 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 0 68 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 49 5 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 49 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 6 42 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 46 18 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 16 18 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 47 60 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 68 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 60 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 7 27 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 54 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 7 10 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 10 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 5 25 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 40 42 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 40 3 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 58 54 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 27 7 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 15 18 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 58 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 25 26 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 67 58 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 18 15 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 41 40 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 26 28 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 26 25 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 52 28 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 22 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 5 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 3 41 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 3 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 30 58 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 67 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 67 29 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 16 68 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 29 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 17 16 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 17 41 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 52 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 32 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 31 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 31 32 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 31 28 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 53 63 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 52 53 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 62 29 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 62 31 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 62 69 29 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 70 { -0.2617188 0.5454102 -2.5396538 -0.3776855 0.6074219 -2.5818367 -0.7238770 0.3483887 -2.6100502 0.8709717 -0.1132813 0.1917725 0.5953369 -0.0722656 2.3579750 0.6739502 -0.2580566 -0.0141106 0.6450195 -0.1577148 -2.2101097 -0.0958252 -0.2307129 -1.3384323 -0.3680420 -0.1149902 -1.8540268 -0.2875977 -0.4106445 -2.3783760 0.0120850 -0.4047852 -2.0494804 -0.9290771 0.5063477 -2.9265594 -0.8930664 0.3229980 -2.8852158 -0.5881348 0.6196289 -2.8660316 -0.3825684 0.7602539 -2.9325180 0.6875000 0.5002441 0.6680717 0.5561523 0.5334473 0.0407372 0.5762939 0.5114746 2.4853592 0.8890381 0.2578125 -0.4510193 0.3731689 0.7470703 -2.9524460 0.3060303 0.6196289 -2.9213448 0.3656006 0.5903320 -3.0510559 0.3480225 -0.2243652 2.3758545 -1.1423340 0.1062012 -2.9302826 -1.0098877 -0.0244141 -2.9341965 0.4776611 -0.2714844 0.7947121 0.2856445 -0.2187500 0.8567276 0.0369873 -0.0798340 0.0108452 0.0341797 -0.1054688 2.0520821 0.0852051 0.5424805 2.2097321 0.0560303 0.3752441 1.4654388 -0.0467529 0.3117676 2.2719345 -0.0792236 0.2087402 2.1530228 1.1500244 0.2551270 -2.9662285 0.6195068 0.5024414 -2.9668808 1.1494141 0.0183105 -2.9471397 0.0683594 -0.5844727 -2.8577461 0.0833740 -0.7600098 -2.9814987 0.8006592 -0.2402344 -2.8968544 -0.8977051 -0.4851074 -2.9504890 0.9283447 0.0131836 0.1939163 0.7863770 0.2304688 2.1438026 0.7171631 -0.0141602 -2.1941872 0.9766846 -0.0224609 -2.8953629 0.7519531 -0.5053711 -2.9463921 0.9262695 0.1625977 -2.9057961 0.7321777 0.1372070 -2.5260582 0.6124268 0.3132324 -2.7301750 0.7844238 -0.0544434 -2.6824036 0.6857910 -0.2099609 -2.7076416 -0.0845947 0.7561035 -2.9742355 0.0869141 -0.4155273 -2.4179497 0.1589355 -0.2307129 2.4243698 0.0872803 -0.1877441 2.5201874 -0.2137451 -0.0766602 -1.3442078 -0.3768311 0.2648926 -2.0408211 -0.9527588 -0.0644531 -2.8217087 -1.1501465 -0.0817871 -2.9414597 0.0861816 0.0351563 0.7568130 0.1879883 0.6059570 2.4040680 0.2904053 0.5266113 -2.4532433 0.0334473 0.6064453 -2.5228920 -0.0482178 0.5610352 2.8972206 -0.0932617 0.2895508 2.4809837 -1.1237793 -0.3059082 -2.9510498 -0.5599365 -0.1916504 -2.3460617 -0.8684082 -0.0761719 -2.6490669 0.0733643 0.3056641 -0.0792007 0.2709961 0.5075684 0.0441818 0.0666504 0.6813965 3.0510521 } } phBound { Type BoundBVH AABBMin 1249.0006104 2864.2937012 45.1304970 AABBMax 1250.5078125 2866.4836426 51.9295311 Radius 3.65015 Centroid 1249.7541504 2865.3886719 48.5300140 CG 895.6269531 2047.4459229 38.6111145 Margin 0.005 GeometryCenter 1249.7541504 2865.3886719 48.5300140 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 97 { Tri 0 { Vertices 17 16 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 17 14 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 18 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 16 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 14 17 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 21 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 53 36 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 19 21 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 26 36 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 36 53 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 23 26 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 38 26 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 23 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 14 36 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 26 6 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 22 24 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 25 24 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 21 18 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 16 22 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 16 15 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 14 15 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 15 14 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 40 6 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 39 15 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 15 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 8 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 2 49 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 1 49 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 1 45 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 1 39 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 8 0 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 0 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 44 39 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 9 8 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 22 33 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 34 24 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 39 22 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 43 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 43 40 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 40 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 6 7 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 25 34 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 40 42 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 30 7 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 30 9 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 30 31 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 44 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 31 30 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 22 39 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 44 33 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 44 30 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 33 44 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 30 42 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 46 42 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 40 41 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 52 42 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 35 43 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 40 43 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 54 33 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 52 54 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 33 11 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 34 11 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 11 33 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 11 10 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 47 48 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 10 43 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 10 41 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 51 41 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 54 52 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 41 58 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 55 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 54 55 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 10 11 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 57 56 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 57 54 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 55 54 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 3 58 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 48 13 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 12 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 3 57 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 12 13 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 57 3 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 10 12 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 51 10 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 3 41 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 41 51 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 50 51 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 50 4 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 12 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 29 12 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 3 12 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 5 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 27 28 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 29 28 50 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 59 { 0.7536621 -1.0253906 0.2561188 0.5637207 -1.0949707 0.3749046 0.4938965 -0.8457031 -0.2413635 0.2866211 0.4865723 2.7668266 0.5495605 0.7541504 2.9363251 0.4841309 0.8608398 3.3056717 0.1680908 -0.1481934 -0.9848404 0.4396973 -0.2473145 -0.4323769 0.5660400 -0.5534668 -0.3679428 0.7028809 -0.4990234 0.3067322 -0.0922852 0.3947754 1.9717026 -0.3187256 0.2172852 1.8744278 -0.0529785 0.3745117 2.3731613 0.0631104 0.4250488 3.1636086 0.1071777 -0.4226074 -2.9467201 -0.1138916 -0.4064941 -0.8670921 -0.1584473 -0.5861816 -2.9094124 0.0030518 -0.8549805 -3.3995171 -0.5093994 -0.3977051 -2.6380653 -0.6834717 -0.5322266 -3.0978279 -0.4326172 -0.8364258 -3.3456879 -0.6766357 -0.2639160 -2.7894821 -0.4498291 -0.2805176 -0.9184303 -0.3774414 0.4765625 -3.1928139 -0.7535400 0.0866699 -3.0024223 -0.4190674 0.3269043 -2.1256142 -0.0358887 0.4086914 -2.7845993 0.2403564 0.7705078 2.9552422 0.2899170 1.0393066 3.3995171 0.1851807 0.7360840 2.4452858 0.1791992 -0.2331543 -0.1856613 0.4035645 -0.3867188 0.0530510 0.3743896 0.4504395 3.0427437 -0.3231201 -0.1955566 1.1570396 -0.4038086 0.2270508 0.6325340 -0.1816406 0.3752441 1.3608360 0.1872559 -0.1333008 -2.9727020 0.1339111 0.4755859 -3.3660545 -0.0205078 0.5134277 -3.1850204 -0.0126953 -0.5021973 -0.3642044 0.1436768 0.3249512 -0.7160912 0.3397217 0.3505859 1.8992653 0.2810059 -0.0581055 -0.3277245 0.0515137 0.4665527 1.0335770 0.0142822 -0.3093262 -0.2012520 0.4064941 -0.7023926 0.4029655 0.1566162 -0.3032227 0.9529343 0.0019531 -0.3171387 2.9056702 -0.1652832 -0.1188965 2.8513145 0.1486816 -0.6823730 -0.4405861 0.4135742 1.0949707 2.9042130 0.2619629 0.5417480 2.0914230 0.4488525 0.0051270 1.3076248 0.3081055 -0.1325684 -3.3326950 0.3364258 -0.2316895 1.3539772 0.3444824 -0.3930664 3.0566711 0.5371094 -0.2702637 2.9631386 0.6422119 0.2067871 2.9977455 0.5278320 0.1137695 2.4963112 } } phBound { Type BoundBVH AABBMin 1248.8425293 2862.8266602 45.0843735 AABBMax 1252.8009033 2867.1611328 59.2916527 Radius 7.68608 Centroid 1250.8217773 2864.9938965 52.1880112 CG 1250.2877197 2864.9992676 51.3033218 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 6 { Capsule 0 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.316468 } Capsule 1 { MaterialIndex 0 CenterTop 8 CenterBottom 9 Radius 0.482035 } Capsule 2 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.245611 } Capsule 3 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.207023 } Capsule 4 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.364736 } Capsule 5 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.389793 } } ComputePolyNeighbors True Vertices 12 { 1250.2207031 2865.6098633 53.2793312 1250.8469238 2865.0571289 58.8483543 1250.4295654 2864.4855957 49.3887825 1252.2047119 2863.3869629 54.5133934 1250.4106445 2866.8181152 52.6736908 1249.9772949 2865.9274902 50.8457031 1250.0296631 2864.4077148 49.1529045 1249.2427979 2863.4750977 51.5913048 1250.3118896 2865.4650879 52.7068901 1249.5135498 2865.2897949 45.6184502 1249.8299561 2865.1250000 47.8658905 1250.4320068 2864.3662109 49.1663589 } } phBound { Type BoundBVH AABBMin 1265.2755127 2834.3291016 45.9623146 AABBMax 1265.5704346 2834.5947266 48.9472084 Radius 1.50558 Centroid 1265.4229736 2834.4619141 47.4547615 CG 1265.0928955 2834.2797852 47.4363098 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.130326 } } ComputePolyNeighbors True Vertices 2 { 1265.4365234 2834.4621582 46.0939331 1265.4094238 2834.4616699 48.8155899 } } phBound { Type BoundGeometry AABBMin 1265.2052002 2834.2717285 46.0541687 AABBMax 1265.6783447 2834.6418457 47.9065933 Radius 0.973695 Centroid 1265.4417725 2834.4567871 46.9803810 CG 955.3403320 2139.7172852 34.8670082 Margin 0.04 GeometryCenter 1265.4417725 2834.4567871 46.9803810 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 110 { Tri 0 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 6 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 0 2 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 8 7 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 9 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 10 9 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 16 13 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 18 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 19 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 25 22 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 27 28 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 22 27 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 12 9 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 12 29 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 30 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 3 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 32 21 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 33 21 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 34 10 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 35 16 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 36 37 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 41 42 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 43 2 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 24 45 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 24 26 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 46 34 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 46 11 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 48 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 6 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 38 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 38 40 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 47 50 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 47 16 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 17 51 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 51 17 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 52 38 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 53 12 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 53 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 13 16 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 35 14 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 43 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 44 54 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 33 0 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 21 33 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 44 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 54 55 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 8 56 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 8 49 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 28 11 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 28 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 33 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 6 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 21 57 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 41 56 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 27 22 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 56 38 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 50 17 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 14 35 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 4 3 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 1 33 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 59 25 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 58 35 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 60 53 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 25 62 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 29 9 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 38 56 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 3 5 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 6 7 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 13 30 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 55 1 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 46 39 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 19 40 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 26 45 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 39 46 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 43 42 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 63 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 8 2 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 19 47 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 42 43 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 63 14 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 60 63 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 60 58 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 60 10 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 16 17 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 13 54 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 8 43 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 37 49 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 24 23 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 45 24 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 55 44 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 54 59 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 9 11 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 10 34 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 63 60 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 16 47 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 46 47 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 2 1 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 7 4 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 30 59 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 28 27 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 23 28 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 52 36 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 19 18 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 21 32 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 53 22 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 53 62 61 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 64 { -0.1440430 -0.0397949 -0.6682549 -0.1459961 -0.0358887 -0.2026253 -0.1342773 0.0854492 -0.2255135 -0.0832520 -0.1328125 -0.7919273 -0.1562500 -0.0644531 -0.7860718 -0.2365723 -0.0192871 -0.8876457 -0.1829834 0.1066895 -0.8481178 -0.1333008 0.0776367 -0.7129898 -0.0693359 0.1645508 -0.8262482 0.1433105 0.0258789 0.6391716 0.1112061 -0.0239258 0.6810760 0.0845947 -0.0200195 0.5695686 0.0517578 0.1240234 0.7180824 -0.1016846 -0.0861816 0.4308739 -0.0737305 -0.0993652 0.5032501 -0.1135254 -0.1137695 0.8843651 -0.0794678 -0.0988770 0.4051247 -0.1004639 -0.0698242 0.2313156 0.2130127 -0.0153809 -0.9116096 0.1461182 -0.0571289 -0.7490082 0.1799316 -0.0793457 -0.9130554 0.0150146 -0.1357422 -0.8004456 -0.0069580 0.1801758 0.5613632 0.0559082 0.1352539 0.4215088 -0.0684814 0.1682129 0.4016457 -0.1215820 0.1289063 0.8391228 -0.0845947 0.1730957 0.5648994 0.0705566 0.1242676 0.5934486 0.0985107 0.0576172 0.4020424 0.1219482 0.1081543 0.6612129 -0.1732178 -0.0585938 0.9033775 -0.2229004 -0.1467285 -0.9232101 -0.0567627 -0.1850586 -0.9127693 -0.0737305 -0.1157227 -0.6709442 0.0556641 -0.0485840 0.3874130 -0.0092773 -0.1047363 0.4168968 0.1372070 0.1472168 -0.9262123 0.0727539 0.1828613 -0.9082451 0.1749268 0.0368652 -0.8260803 0.1134033 0.0004883 0.0153770 0.1649170 -0.0114746 -0.7451019 0.0928955 0.1062012 -0.1533661 0.0117188 0.1579590 -0.1923828 -0.0761719 0.1496582 -0.1932869 -0.1416016 0.1237793 0.3661385 -0.1112061 0.1535645 0.3534050 0.1080322 -0.0500488 -0.1528282 0.0338135 -0.0993652 -0.1615410 -0.2199707 0.0935059 -0.9000397 -0.0909424 0.1835938 -0.9213715 -0.0222168 -0.0996094 -0.0030975 -0.1380615 -0.0461426 0.3129730 0.2365723 -0.0029297 -0.9208336 0.0784912 0.1071777 0.7435188 -0.1531982 0.0759277 0.3699570 -0.1676025 0.0473633 0.3405304 0.0029297 0.1850586 -0.8257942 0.0202637 -0.1831055 -0.9031219 0.0219727 -0.0895996 0.7550621 -0.1552734 0.0690918 0.7932014 0.1154785 0.0253906 0.7831879 0.0938721 -0.0185547 0.9000969 0.0656738 0.1066895 0.9262123 0.0479736 -0.1047363 0.8962479 } Shrunk 64 { -0.1440430 -0.0397949 -0.6682549 -0.1459961 -0.0358887 -0.2026253 -0.1342773 0.0854492 -0.2255135 -0.0832520 -0.1328125 -0.7919273 -0.1562500 -0.0644531 -0.7860718 -0.2365723 -0.0192871 -0.8876457 -0.1829834 0.1066895 -0.8481178 -0.1333008 0.0776367 -0.7129898 -0.0693359 0.1645508 -0.8262482 0.1433105 0.0258789 0.6391716 0.1112061 -0.0239258 0.6810760 0.0845947 -0.0200195 0.5695686 0.0517578 0.1240234 0.7180824 -0.1016846 -0.0861816 0.4308739 -0.0737305 -0.0993652 0.5032501 -0.1135254 -0.1137695 0.8843651 -0.0794678 -0.0988770 0.4051247 -0.1004639 -0.0698242 0.2313156 0.2130127 -0.0153809 -0.9116096 0.1461182 -0.0571289 -0.7490082 0.1799316 -0.0793457 -0.9130554 0.0150146 -0.1357422 -0.8004456 -0.0069580 0.1801758 0.5613632 0.0559082 0.1352539 0.4215088 -0.0684814 0.1682129 0.4016457 -0.1215820 0.1289063 0.8391228 -0.0845947 0.1730957 0.5648994 0.0705566 0.1242676 0.5934486 0.0985107 0.0576172 0.4020424 0.1219482 0.1081543 0.6612129 -0.1732178 -0.0585938 0.9033775 -0.2229004 -0.1467285 -0.9232101 -0.0567627 -0.1850586 -0.9127693 -0.0737305 -0.1157227 -0.6709442 0.0556641 -0.0485840 0.3874130 -0.0092773 -0.1047363 0.4168968 0.1372070 0.1472168 -0.9262123 0.0727539 0.1828613 -0.9082451 0.1749268 0.0368652 -0.8260803 0.1134033 0.0004883 0.0153770 0.1649170 -0.0114746 -0.7451019 0.0928955 0.1062012 -0.1533661 0.0117188 0.1579590 -0.1923828 -0.0761719 0.1496582 -0.1932869 -0.1416016 0.1237793 0.3661385 -0.1112061 0.1535645 0.3534050 0.1080322 -0.0500488 -0.1528282 0.0338135 -0.0993652 -0.1615410 -0.2199707 0.0935059 -0.9000397 -0.0909424 0.1835938 -0.9213715 -0.0222168 -0.0996094 -0.0030975 -0.1380615 -0.0461426 0.3129730 0.2365723 -0.0029297 -0.9208336 0.0784912 0.1071777 0.7435188 -0.1531982 0.0759277 0.3699570 -0.1676025 0.0473633 0.3405304 0.0029297 0.1850586 -0.8257942 0.0202637 -0.1831055 -0.9031219 0.0219727 -0.0895996 0.7550621 -0.1552734 0.0690918 0.7932014 0.1154785 0.0253906 0.7831879 0.0938721 -0.0185547 0.9000969 0.0656738 0.1066895 0.9262123 0.0479736 -0.1047363 0.8962479 } } phBound { Type BoundBVH AABBMin 1211.9379883 2862.0446777 41.7718697 AABBMax 1217.0531006 2865.7492676 93.0631638 Radius 25.8393 Centroid 1214.4956055 2863.8969727 67.4175186 CG 1109.7728271 2616.3979492 49.1904449 Margin 0.005 GeometryCenter 1215.1987305 2863.6674805 50.2814407 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 109 { Sphere 0 { MaterialIndex 1 Center 66 Radius 1.8522 } Capsule 1 { MaterialIndex 1 CenterTop 64 CenterBottom 65 Radius 0.931193 } Tri 2 { Vertices 52 59 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 15 59 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 59 15 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 24 59 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 25 51 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 38 25 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 27 25 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 27 38 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 11 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 39 42 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 11 42 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 11 12 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 24 50 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 24 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 27 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 26 27 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 24 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 22 52 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 26 37 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 15 52 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 36 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 14 13 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 13 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 10 55 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 10 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 9 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 22 24 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 37 20 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 34 22 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 22 36 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 36 54 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 13 54 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 55 10 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 36 22 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 36 53 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 53 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 36 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 12 55 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 37 26 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 37 46 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 20 37 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 23 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 20 21 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 49 22 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 49 35 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 35 49 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 56 46 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 12 56 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 56 12 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 17 57 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 55 53 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 17 53 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 53 36 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 35 48 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 46 19 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 23 46 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 32 31 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 46 56 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 30 49 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 30 3 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 49 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 35 4 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 43 35 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 35 43 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 56 57 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 57 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 46 47 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 30 23 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 30 21 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 3 2 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 18 32 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 0 2 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 3 30 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 7 0 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 19 56 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 43 17 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 18 47 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 19 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 44 18 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 44 17 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 44 43 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 41 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 32 33 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 33 8 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 18 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 18 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 8 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 8 7 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 18 44 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 0 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 6 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 1 29 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 2 1 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 8 5 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 8 45 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 28 29 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 60 29 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 40 44 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 40 29 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 33 45 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 60 61 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 5 62 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 62 5 45 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 67 { -1.0659180 0.9221191 3.4868507 -0.4930420 1.0998535 5.8390884 -0.9064941 1.0620117 3.6716499 -1.0141602 0.6452637 2.8479004 -0.7615967 0.9760742 0.9396400 -1.2551270 -0.1550293 5.3849297 -1.1239014 0.7875977 5.7639198 -1.0581055 -0.1020508 4.4891396 -0.7438965 -0.5466309 4.8054810 1.1400146 0.7927246 -5.7357407 0.7553711 0.5722656 -3.1830406 1.0463867 0.2263184 -4.5173416 1.0098877 -0.1499023 -3.5448074 0.1461182 0.9909668 -3.2167130 -0.1472168 1.0942383 -5.5399780 -0.6470947 0.9353027 -5.2306824 0.8065186 -0.0358887 2.6247292 0.7264404 0.4736328 2.3530197 0.6254883 -0.2175293 2.8369293 0.5875244 -0.7824707 2.1024475 -1.0388184 -0.3637695 -1.1166077 -1.2165527 -0.1386719 0.7955589 -1.0521240 0.2614746 -2.2097321 -0.7934570 -0.7275391 0.7094307 -0.7899170 -0.8112793 -3.6559982 0.1448975 -1.0847168 -3.9002991 -0.0533447 -1.0305176 -2.5041504 0.7940674 -0.6931152 -3.9167480 -0.0119629 1.0246582 6.2086792 0.3045654 0.8383789 4.2542305 -1.0162354 -0.1804199 3.0929909 -0.6185303 -0.6525879 2.7108688 -0.1596680 -0.8315430 3.0319099 -0.3575439 -0.7121582 6.2603683 -0.6606445 0.9208984 -1.5300598 -0.3824463 1.0122070 -0.3875999 -0.0418701 1.1081543 -2.5010223 -0.7019043 -0.8928223 -2.1510010 0.7401123 -0.6406250 -6.0270309 1.1416016 -0.4072266 -6.4389000 0.4730225 -0.4047852 5.6221886 0.0662842 -0.7387695 5.5759888 1.3867188 0.4091797 -5.8657227 0.2669678 0.9936523 3.2276688 0.5321045 0.6857910 3.8924713 -0.7043457 -0.5949707 5.8218689 -0.3244629 -0.8188477 0.7658081 0.2490234 -0.8164063 1.9928207 0.2908936 0.9860840 1.0445709 -1.1595459 0.2971191 0.6890717 -0.5888672 -0.9809570 -5.5039597 -0.2115479 -1.1083984 -5.5266724 -0.8254395 0.4599609 -3.5800400 0.6614990 0.7126465 -1.4235611 0.8507080 0.8200684 -2.1486511 1.0184326 0.2521973 -2.4368095 0.4803467 -0.4301758 1.4016304 0.7141113 0.0925293 1.0704117 0.0670166 -1.1025391 -6.4091492 -1.2437744 0.0366211 -6.0740128 0.6052246 0.2910156 5.4358292 0.5894775 -0.0676270 6.2517509 -1.3865967 0.1450195 6.4389000 -1.1507568 0.4748535 -5.8986130 -2.2608640 0.3215336 41.8031235 0.2476804 0.2634274 -6.1311741 0.0021973 0.2294922 -6.6573715 } } phBound { Type BoundBVH AABBMin 1222.8055420 2765.3674316 35.9217682 AABBMax 1226.2019043 2767.6245117 50.9628983 Radius 7.79207 Centroid 1224.5036621 2766.4960938 43.4423332 CG 1224.6237793 2766.4702148 42.4413376 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 2 { Capsule 0 { MaterialIndex 1 CenterTop 2 CenterBottom 3 Radius 0.71305 } Capsule 1 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.508729 } } ComputePolyNeighbors True Vertices 4 { 1224.9388428 2766.6645508 41.6203384 1223.5465088 2766.0668945 50.3748627 1225.2792969 2766.6694336 41.1134720 1225.1333008 2766.7172852 36.6589737 } } phBound { Type BoundBVH AABBMin 1223.8647461 2765.7241211 36.3068581 AABBMax 1226.3319092 2767.3603516 42.6058769 Radius 3.48001 Centroid 1225.0983887 2766.5422363 39.4563675 CG 889.0247803 2007.8883057 26.2797947 Margin 0.005 GeometryCenter 1225.0983887 2766.5422363 39.4563675 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 115 { Tri 0 { Vertices 39 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 56 64 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 56 39 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 64 56 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 24 57 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 57 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 12 24 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 12 56 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 23 24 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 23 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 14 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 9 39 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 39 9 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 39 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 66 2 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 2 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 13 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 13 1 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 55 2 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 2 55 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 65 8 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 55 66 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 65 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 54 55 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 8 7 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 36 37 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 44 38 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 38 49 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 51 36 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 36 51 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 48 6 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 9 51 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 10 7 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 38 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 35 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 38 43 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 48 49 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 45 46 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 48 43 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 6 48 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 46 42 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 50 14 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 0 61 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 1 20 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 20 1 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 19 50 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 60 20 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 60 47 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 34 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 45 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 43 35 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 34 20 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 45 34 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 46 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 18 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 54 67 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 0 55 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 0 67 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 0 68 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 49 5 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 49 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 46 18 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 16 18 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 47 60 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 68 16 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 60 61 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 7 27 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 58 54 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 7 10 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 10 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 5 25 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 6 42 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 40 3 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 40 42 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 54 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 27 7 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 15 18 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 58 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 25 26 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 67 58 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 18 15 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 41 40 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 26 28 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 26 25 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 52 28 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 5 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 22 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 3 41 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 3 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 30 58 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 67 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 67 29 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 16 68 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 29 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 17 16 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 17 41 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 52 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 32 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 31 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 31 32 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 31 28 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 53 63 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 52 53 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 62 29 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 62 31 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 62 69 29 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 70 { -0.3090820 0.5854492 -2.6560936 -0.4293213 0.6533203 -2.7083893 -0.7999268 0.3784180 -2.7646370 0.6781006 -0.1389160 0.2522087 0.2097168 -0.0976563 2.4709396 0.4824219 -0.2919922 0.0238304 0.6285400 -0.1787109 -2.2484512 -0.2349854 -0.2521973 -1.4038353 -0.4840088 -0.1240234 -1.9572639 -0.3585205 -0.4409180 -2.4940987 -0.0642090 -0.4382324 -2.1313210 -0.9927979 0.5507813 -3.1070557 -0.9592285 0.3532715 -3.0620956 -0.6315918 0.6689453 -3.0180969 -0.4049072 0.8181152 -3.0708771 0.4493408 0.5200195 0.7325020 0.3592529 0.5583496 0.0740013 0.1846924 0.5285645 2.6029320 0.7524414 0.2607422 -0.4099579 0.4053955 0.7968750 -3.0339241 0.3298340 0.6606445 -3.0072937 0.4038086 0.6289063 -3.1369667 -0.0578613 -0.2585449 2.4701691 -1.2243652 0.1232910 -3.1282845 -1.0836182 -0.0180664 -3.1226883 0.2072754 -0.3066406 0.8451004 -0.0026855 -0.2482910 0.8947868 -0.1997070 -0.0947266 0.0017357 -0.3666992 -0.1271973 2.1118279 -0.3187256 0.5671387 2.2806740 -0.2917480 0.3901367 1.5084229 -0.4671631 0.3208008 2.3342247 -0.4932861 0.2106934 2.2086029 1.2335205 0.2614746 -2.9906006 0.6680908 0.5319824 -3.0308342 1.2291260 0.0073242 -2.9714966 0.0592041 -0.6296387 -2.9631996 0.0836182 -0.8181152 -3.0905571 0.8493652 -0.2670898 -2.9469910 -0.9664307 -0.5136719 -3.1323357 0.7406006 -0.0039063 0.2591553 0.4342041 0.2258301 2.2649498 0.7059326 -0.0251465 -2.2261620 1.0397949 -0.0351563 -2.9313622 0.7988281 -0.5510254 -3.0025673 0.9882813 0.1640625 -2.9453506 0.7498779 0.1379395 -2.5676193 0.6397705 0.3283691 -2.7872162 0.8166504 -0.0681152 -2.7258492 0.7115479 -0.2338867 -2.7599106 -0.0827637 0.8110352 -3.0913315 0.0454102 -0.4497070 -2.5066414 -0.2641602 -0.2639160 2.5058670 -0.3481445 -0.2172852 2.5996513 -0.3593750 -0.0856934 -1.4183083 -0.4749756 0.2841797 -2.1499405 -1.0318604 -0.0620117 -3.0020828 -1.2336426 -0.0783691 -3.1410179 -0.2058105 0.0263672 0.7770767 -0.2236328 0.6340332 2.4896584 0.2747803 0.5598145 -2.5247803 0.0061035 0.6481934 -2.6161499 -0.5164795 0.5866699 2.9814339 -0.5339355 0.2966309 2.5467758 -1.2066650 -0.3193359 -3.1495094 -0.6506348 -0.2033691 -2.4807816 -0.9555664 -0.0756836 -2.8172188 -0.1500244 0.3188477 -0.0874138 0.0534668 0.5332031 0.0557671 -0.4047852 0.7145996 3.1495094 } } phBound { Type BoundBVH AABBMin 1264.8433838 2779.3769531 44.4050140 AABBMax 1267.2987061 2786.4892578 92.4214020 Radius 24.3012 Centroid 1266.0710449 2782.9331055 68.4132080 CG 1266.1938477 2782.9355469 68.4176025 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.21639 } } ComputePolyNeighbors True Vertices 2 { 1266.0639648 2780.7099609 91.0921402 1266.0781250 2785.1562500 45.7342758 } } phBound { Type BoundBVH AABBMin 1264.5203857 2783.1518555 46.5431824 AABBMax 1268.9908447 2786.9521484 56.2417870 Radius 5.66768 Centroid 1266.7556152 2785.0520020 51.3924866 CG -8.2576628 57.3647003 -430.4022522 Margin 0.005 GeometryCenter 1266.7556152 2785.0520020 51.3924866 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 4 51 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 51 57 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 51 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 61 51 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 18 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 61 50 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 18 17 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 38 18 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 38 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 38 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 38 52 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 39 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 38 40 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 40 60 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 6 57 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 40 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 60 40 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 33 6 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 25 23 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 22 60 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 32 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 23 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 3 50 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 3 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 45 39 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 0 2 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 0 4 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 0 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 0 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 45 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 30 45 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 39 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 39 30 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 57 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 57 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 5 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 5 6 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 33 47 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 5 7 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 7 5 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 47 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 40 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 32 33 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 41 34 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 33 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 39 34 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 36 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 34 36 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 58 34 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 29 30 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 27 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 29 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 26 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 58 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 37 35 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 36 37 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 46 47 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 54 46 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 26 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 28 26 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 26 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 29 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 28 15 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 55 29 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 55 53 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 31 29 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 26 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 46 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 46 54 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 54 35 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 31 49 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 58 31 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 42 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 12 11 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 42 11 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 53 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 49 21 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 43 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 53 55 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 21 44 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 9 8 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 49 53 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 43 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 56 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 56 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 55 56 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 56 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 48 49 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 49 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 48 19 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 44 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.3291016 -1.2856445 -2.0175133 -0.8637695 -1.4487305 -3.9349670 -0.4327393 -1.6240234 -2.3277855 -1.5915527 -0.7272949 -3.0181046 -1.2274170 -1.2875977 -3.8838959 0.2551270 -1.2946777 -2.3418884 0.1127930 -1.0239258 -4.4395676 -0.5499268 -1.5922852 -1.2780571 -0.3826904 -0.0302734 4.3488579 -1.1809082 -0.2075195 2.9499588 -0.7950439 -0.1074219 4.8493004 0.0589600 -1.6025391 1.6416206 -0.6679688 -1.7849121 2.3677177 -0.8723145 -1.6655273 4.3672638 -1.2215576 -1.2050781 4.1088028 -1.4903564 -1.0239258 2.4964294 -2.1107178 0.9404297 -4.7719574 -2.2352295 0.3730469 -4.7409286 -1.6599121 0.2580566 -4.1295929 0.5463867 -0.6801758 4.0277481 0.5726318 -1.2006836 4.2606735 0.4763184 -1.0065918 2.6998138 1.8431396 0.6430664 -4.6974335 0.8724365 -0.0559082 -4.2210388 2.2352295 0.3955078 -4.6356735 0.5194092 -0.7883301 -4.8493042 -1.1824951 -1.5275879 -0.5283546 -1.4108887 -1.1840820 -0.4863434 -1.4200439 -1.0722656 0.5632401 -1.4189453 -0.3369141 -0.4747620 -1.2330322 -0.0227051 -1.8350601 -0.6645508 0.3413086 0.2431679 0.6700439 0.3369141 -4.0488319 0.5736084 -0.3417969 -2.8764763 -0.1917725 0.3759766 -1.4732742 0.3720703 0.2185059 -0.4195366 0.3768311 -0.1035156 -1.5031128 0.6406250 -0.5234375 -0.7986908 -1.0546875 0.9230957 -4.2228203 -1.0802002 0.6005859 -3.4489212 -0.5778809 0.7421875 -3.7681007 -0.1723633 0.6062012 -3.5293846 -0.0573730 -1.9001465 3.5801544 -1.1303711 -1.6430664 2.3415871 0.2045898 -1.5397949 2.9988022 -1.5704346 -0.4855957 -2.5817909 0.4774170 -1.0361328 -0.7893410 0.5422363 -0.8117676 -1.9357147 0.2030029 -0.3029785 4.3494492 0.1417236 -0.0732422 2.7679520 -1.8050537 -0.1523438 -4.3363876 -1.6380615 -1.1462402 -4.8349037 -0.8714600 1.4106445 -4.5811920 -0.5926514 0.1623535 1.3730659 0.4859619 -0.3513184 0.2630615 -1.3940430 -0.5839844 2.4233856 -1.2845459 -0.6914063 4.5687180 -0.6237793 -1.3806152 -4.8268852 -0.3361816 0.4387207 -0.7422791 -1.4708252 1.9001465 -4.6193466 0.6529541 0.8066406 -4.5872803 -1.8875732 -0.4606934 -4.8115959 } } phBound { Type BoundBVH AABBMin 1388.3472900 2829.9230957 44.9528389 AABBMax 1390.6566162 2832.2326660 89.1553345 Radius 22.1615 Centroid 1389.5019531 2831.0778809 67.0540848 CG 1389.6374512 2831.3569336 67.0615082 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.15469 } } ComputePolyNeighbors True Vertices 2 { 1389.5019531 2831.0778809 88.0006409 1389.5019531 2831.0778809 46.1075287 } } phBound { Type BoundBVH AABBMin 1387.9410400 2829.5698242 45.7934113 AABBMax 1391.0614014 2832.5944824 57.0570183 Radius 6.03643 Centroid 1389.5012207 2831.0820313 51.4252167 CG 1017.7722168 2076.0361328 49.2489471 Margin 0.005 GeometryCenter 1389.5012207 2831.0820313 51.4252167 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 117 { Tri 0 { Vertices 23 52 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 24 52 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 23 53 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 59 58 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 42 44 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 58 59 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 64 32 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 32 64 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 45 32 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 58 31 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 58 32 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 24 50 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 50 24 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 50 49 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 21 20 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 20 21 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 65 20 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 19 22 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 22 16 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 43 65 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 18 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 18 43 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 44 18 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 17 16 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 22 19 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 23 31 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 30 13 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 23 13 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 25 24 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 25 49 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 49 25 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 63 21 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 63 51 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 32 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 28 30 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 45 18 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 17 28 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 19 21 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 17 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 17 26 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 30 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 51 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 14 30 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 38 30 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 12 13 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 13 12 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 51 29 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 51 63 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 63 25 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 46 25 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 47 25 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 46 62 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 62 29 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 38 37 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 27 26 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 36 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 15 12 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 39 12 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 15 14 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 12 39 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 38 28 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 36 37 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 27 29 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 27 57 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 56 57 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 29 62 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 62 46 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 33 56 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 15 8 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 39 15 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 15 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 41 47 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 41 48 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 46 47 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 48 33 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 56 33 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 37 9 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 9 37 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 10 37 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 36 11 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 11 36 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 56 11 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 11 56 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 61 56 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 8 6 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 48 41 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 39 5 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 4 40 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 67 41 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 67 3 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 6 8 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 7 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 66 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 7 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 11 61 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 61 66 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 66 61 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 33 2 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 33 0 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 33 48 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 3 0 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 0 3 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 54 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 54 55 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 34 56 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 34 35 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 34 60 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 2 55 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 60 34 55 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 68 { -0.3836670 0.8569336 3.1360741 -0.2940674 0.8288574 3.6707993 -0.0650635 0.9616699 2.9031715 -0.6112061 0.4333496 3.7371445 -0.1135254 -0.4313965 3.8064117 -0.0939941 -0.8044434 2.9074707 0.5778809 -0.2749023 3.8010864 0.9503174 -0.1125488 3.0826187 0.3924561 -0.6992188 2.8354530 0.6016846 -0.4379883 2.4177780 0.9729004 -0.1535645 2.3565903 1.0895996 0.3591309 2.5786591 -0.4229736 -0.3298340 -0.1917381 -0.4907227 -0.2338867 -1.8691330 -0.2308350 -0.5751953 -0.5999565 -0.0556641 -0.5656738 2.2885208 0.6802979 0.9189453 -5.0190468 0.8360596 0.8173828 -3.5772972 0.8843994 0.4323730 -4.2548561 0.2689209 1.1240234 -2.8653641 -0.9302979 1.0141602 -5.4322510 -0.0531006 1.0725098 -2.8400955 -0.0073242 1.2231445 -4.9820900 -0.6256104 -0.6428223 -4.3825645 -0.7995605 -0.1467285 -3.5551262 -0.7102051 0.4179688 -1.1037445 0.6821289 0.6003418 -0.2163162 0.7281494 0.5866699 1.0798454 0.8636475 0.1115723 -0.2123604 0.3688965 0.9768066 0.8809814 0.5375977 -0.4113770 -2.8122520 -0.0137939 -0.6582031 -3.5958633 0.3204346 -0.9138184 -4.8897896 -0.0217285 1.1140137 2.5389557 0.6245117 0.9050293 2.8653603 0.3386230 1.1801758 2.6391640 0.8493652 0.2326660 1.2041168 0.7976074 -0.0444336 1.3938751 0.6270752 -0.3044434 -0.2128792 -0.5102539 -0.4221191 2.8650169 -0.4151611 -0.3850098 4.2897453 -0.6401367 0.0605469 2.9052353 1.5601807 0.0207520 -5.6318054 1.1929932 0.6721191 -5.6094589 0.9167480 -0.3503418 -4.9078369 1.0025635 -0.0031738 -4.3383942 -0.5865479 0.7312012 1.1331329 -0.6096191 0.1555176 1.1025352 -0.6018066 0.5800781 3.1420898 -0.5826416 0.6184082 -2.8816910 -1.5601807 0.4184570 -5.5467224 0.2611084 1.0373535 -1.1066666 -1.4190674 -0.5703125 -5.5056458 -0.8973389 -1.1018066 -5.3922005 -0.0332031 1.0102539 4.0133591 0.2933350 0.9729004 4.0345001 0.5064697 1.0187988 2.4069481 0.7801514 0.6723633 2.1401901 -0.0086670 -1.0205078 -4.9459953 0.1030273 -1.5122070 -5.4930954 0.6781006 0.8479004 3.7094727 0.8629150 0.5053711 2.8416405 -0.1152344 0.9145508 1.0753784 -0.3079834 1.0224609 -1.0303497 1.2049561 -0.9577637 -5.4595795 0.1231689 1.5124512 -5.5022049 0.8198242 0.0371094 3.6738930 -0.6260986 0.0815430 5.6318016 } } phBound { Type BoundBVH AABBMin 1347.8614502 2811.2641602 44.1194420 AABBMax 1351.7297363 2815.6979980 57.9401855 Radius 7.51058 Centroid 1349.7956543 2813.4809570 51.0298157 CG 996.3577271 2076.0187988 41.8443832 Margin 0.005 GeometryCenter 1349.7956543 2813.4809570 51.0298157 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 132 { Tri 0 { Vertices 59 57 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 62 59 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 12 13 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 63 13 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 12 11 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 11 12 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 2 1 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 2 61 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 11 61 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 63 61 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 1 10 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 44 61 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 10 45 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 45 10 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 43 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 43 75 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 59 58 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 57 2 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 2 57 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 10 1 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 21 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 9 22 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 20 21 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 0 8 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 55 57 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 55 56 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 2 56 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 3 2 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 2 3 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 55 18 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 59 35 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 64 35 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 35 64 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 65 37 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 29 36 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 37 73 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 76 37 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 36 29 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 34 58 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 58 34 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 54 34 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 36 71 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 16 54 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 17 16 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 45 21 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 46 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 46 43 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 46 20 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 73 43 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 76 43 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 73 46 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 73 37 76 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 73 74 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 20 29 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 30 29 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 22 30 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 17 71 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 29 30 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 30 22 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 51 17 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 56 18 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 72 0 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 38 0 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 8 0 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 38 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 9 38 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 22 9 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 28 49 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 55 34 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 4 18 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 34 54 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 15 4 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 54 16 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 14 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 17 51 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 49 51 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 19 18 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 4 7 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 7 68 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 68 3 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 68 72 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 14 15 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 50 14 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 49 50 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 5 4 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 15 14 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 6 7 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 72 68 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 28 33 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 33 47 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 50 49 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 72 25 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 72 52 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 70 68 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 68 70 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 7 6 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 6 66 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 6 5 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 66 5 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 52 28 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 26 28 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 33 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 47 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 50 47 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 5 14 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 40 14 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 24 52 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 25 70 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 69 23 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 70 66 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 117 { Vertices 67 69 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 118 { Vertices 66 42 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 119 { Vertices 40 42 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 120 { Vertices 26 52 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 121 { Vertices 24 53 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 122 { Vertices 26 60 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 123 { Vertices 31 27 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 124 { Vertices 39 67 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 125 { Vertices 42 40 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 126 { Vertices 40 47 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 127 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 128 { Vertices 33 27 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 129 { Vertices 31 32 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 130 { Vertices 32 48 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 131 { Vertices 41 47 48 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 77 { -1.0501709 -0.4340820 -5.3728828 -1.1916504 -0.0476074 -5.9043617 -1.0704346 -0.7463379 -5.9686852 -0.5968018 -0.4348145 -0.9759598 0.9044189 -0.6877441 -0.1956139 1.2825928 -0.0983887 0.6338692 0.8477783 -0.5229492 1.5772438 0.3150635 -0.8144531 0.4377289 -0.9342041 0.1315918 -4.4961548 -0.5710449 0.6213379 -4.5307426 -1.0910645 0.2702637 -5.9115334 -1.5502930 -0.4833984 -6.4330978 -1.2816162 -0.9672852 -6.6916656 -1.6757813 -1.0236816 -6.8479462 1.3068848 0.6630859 1.2235565 1.2067871 -0.3291016 -1.1067200 1.2363281 0.0178223 -1.7042122 0.9138184 0.6325684 -4.5277939 0.2917480 -0.9748535 -1.8497353 -0.2977295 -0.8154297 -1.2589912 0.8739014 1.0024414 -5.5635414 -0.3750000 0.9213867 -5.9378967 0.2188721 0.9409180 -5.1195869 0.6230469 0.2270508 6.5265236 0.2304688 0.5185547 6.4392128 -0.1093750 -0.1213379 3.1731529 0.0642090 1.0935059 5.5038528 0.2469482 1.2905273 3.8185196 -0.3122559 0.8298340 0.9495926 1.0828857 0.7329102 -5.5715561 0.7695313 0.9213867 -5.0512543 0.4892578 1.8688965 5.9781761 0.8302002 1.7966309 5.2465477 0.5168457 1.4282227 3.7729645 0.7354736 -0.9575195 -4.5022736 0.9604492 -1.1809082 -5.8876991 1.1230469 -0.5986328 -5.3688774 1.5897217 -0.8088379 -6.4784431 -0.5454102 0.4018555 0.7022018 1.8106689 0.8906250 6.1382523 1.7529297 0.6918945 4.4031448 1.6978760 1.6745605 5.9861908 1.5270996 0.2229004 5.6236458 0.6363525 2.0385742 -6.8418274 -1.8385010 0.3791504 -6.7861519 -0.2467041 1.4465332 -6.6688881 0.8825684 1.5773926 -6.6475868 1.3223877 1.3981934 4.2487640 1.4672852 2.2170410 6.6726799 0.3493652 1.1621094 0.3179359 0.9276123 1.0661621 1.1761055 0.4494629 1.0053711 -2.8599625 -0.0086670 0.5407715 5.0489349 0.0449219 1.0202637 6.2801895 1.0583496 -0.4731445 -3.6759491 0.1125488 -1.2529297 -4.1684113 -0.4018555 -1.0144043 -4.4879303 -0.2133789 -1.5900879 -5.8758888 0.0363770 -1.5390625 -5.6131020 -0.0034180 -2.2167969 -6.8059769 0.1375732 1.5947266 5.8417206 -1.6821289 0.2927246 -6.7192917 -0.3571777 -2.2136230 -6.8675613 -1.9342041 -0.5546875 -6.9103737 1.6966553 -1.2258301 -6.6659355 1.9340820 -0.5017090 -6.6743698 1.0955811 -0.3012695 4.1028175 1.1589355 0.2248535 6.5891647 -0.1734619 -0.6621094 0.1766319 0.9742432 0.2297363 6.9103699 0.6540527 -0.2419434 4.7173920 1.1358643 0.0207520 -4.8338127 -0.5537109 -0.0925293 0.4486961 1.4694824 1.1691895 -6.4177017 1.2089844 1.0419922 -6.0222549 -0.7430420 1.5588379 -6.8568039 1.7127686 1.5541992 -6.6705742 } } phBound { Type BoundBVH AABBMin 1341.2871094 2800.9753418 43.3113747 AABBMax 1359.7333984 2824.4807129 87.4918213 Radius 26.6678 Centroid 1350.5102539 2812.7280273 65.4015961 CG 1349.6783447 2814.5778809 59.2062798 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_SEE_THROUGH MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 5 { Capsule 0 { MaterialIndex 1 CenterTop 8 CenterBottom 9 Radius 1.11809 } Capsule 1 { MaterialIndex 1 CenterTop 6 CenterBottom 7 Radius 0.944002 } Capsule 2 { MaterialIndex 1 CenterTop 4 CenterBottom 5 Radius 0.312914 } Capsule 3 { MaterialIndex 1 CenterTop 2 CenterBottom 3 Radius 0.229089 } Capsule 4 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 7.82771 } } ComputePolyNeighbors True Vertices 10 { 1350.6422119 2811.7675781 77.6737366 1350.3782959 2813.6884766 71.5192566 1349.4105225 2815.9816895 58.9893951 1346.9320068 2818.6477051 61.2697144 1349.8441162 2814.9228516 57.2645531 1348.8814697 2815.5654297 58.1141319 1350.6527100 2814.4060059 56.4515724 1350.3819580 2813.8781738 53.6023064 1349.6704102 2813.1992188 44.5381927 1350.3862305 2813.6337891 52.6641083 } } phBound { Type BoundBVH AABBMin 1370.3055420 2777.1145020 46.9202728 AABBMax 1372.1905518 2778.9992676 105.4898071 Radius 29.3151 Centroid 1371.2480469 2778.0568848 76.2050400 CG 1371.1307373 2778.2150879 76.2033081 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.94249 } } ComputePolyNeighbors True Vertices 2 { 1371.2480469 2778.0568848 104.5473175 1371.2480469 2778.0568848 47.8627625 } } phBound { Type BoundBVH AABBMin 1369.6160889 2776.5837402 47.3563309 AABBMax 1372.7132568 2779.6862793 60.3641891 Radius 6.86336 Centroid 1371.1646729 2778.1350098 53.8602600 CG 967.6766357 1961.6572266 53.1917038 Margin 0.005 GeometryCenter 1371.1646729 2778.1350098 53.8602600 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 91 { Tri 0 { Vertices 17 18 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 18 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 33 18 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 28 18 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 5 34 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 5 18 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 37 34 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 37 5 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 3 38 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 38 3 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 38 45 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 43 52 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 18 28 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 15 25 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 28 16 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 42 25 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 25 41 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 41 25 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 43 42 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 43 53 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 42 44 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 43 44 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 44 43 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 50 4 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 5 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 1 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 1 45 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 2 4 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 50 35 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 45 1 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 39 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 27 50 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 26 41 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 41 26 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 4 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 44 39 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 44 22 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 39 1 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 35 50 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 32 50 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 35 11 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 1 0 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 40 1 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 12 13 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 40 22 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 2 9 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 10 9 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 9 2 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 11 32 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 11 35 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 27 49 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 49 27 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 26 24 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 26 22 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 13 22 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 22 13 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 9 8 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 9 10 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 8 10 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 32 31 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 31 32 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 29 32 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 29 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 29 49 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 29 24 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 29 21 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 23 21 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 23 13 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 31 47 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 6 8 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 51 6 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 7 0 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 12 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 7 12 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 13 14 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 13 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 12 7 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 36 14 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 6 7 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 36 19 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 21 20 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 20 46 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 31 30 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 30 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 48 47 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 46 20 48 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 54 { -0.6390381 0.2973633 2.5424805 -0.4777832 0.6821289 -1.7329979 -0.6248779 -0.2041016 -0.7581673 -0.8270264 0.2099609 -4.3317528 -0.6186523 -0.0656738 -2.5448608 -0.9020996 -0.3510742 -5.2035599 -0.7858887 -0.2133789 5.7299805 -0.6226807 0.3173828 5.4348106 -0.6691895 -0.2687988 4.0095863 -0.7589111 -0.5646973 2.4894791 -0.5699463 -0.8383789 2.5543900 -0.4096680 -0.6411133 1.8608322 0.0485840 0.9213867 2.7796860 0.3455811 0.9470215 2.2592201 0.0120850 0.9309082 5.4477158 1.5303955 -0.8371582 -6.5039291 0.7431641 -0.8864746 -5.7563782 0.6846924 -1.5512695 -6.3141632 -0.4956055 -1.0244141 -5.7937012 0.7624512 0.7297363 5.9612312 0.9479980 0.4199219 5.7583656 1.0499268 0.4082031 2.5049629 0.8138428 0.5886230 1.7397461 0.9155273 0.8298340 2.2600136 1.0875244 0.1166992 2.0744171 1.5485840 -0.0527344 -6.4969826 0.9952393 0.0461426 0.5844803 0.9158936 -0.3649902 0.7188644 0.9974365 -0.6230469 -5.1731911 0.7647705 -0.5397949 3.3662491 1.0837402 -0.2050781 3.8041382 0.3536377 -0.7143555 3.4996414 -0.0401611 -1.0075684 2.4612923 -0.6309814 -1.5073242 -6.3622017 -1.4401855 -0.6787109 -6.2964973 -0.5626221 -0.5432129 -1.1944695 -0.3040771 0.7651367 5.7337532 -1.5485840 0.1757813 -6.3749046 -1.2282715 0.6159668 -6.2889557 0.2381592 1.0424805 -1.6474457 0.3538818 0.8347168 0.5828934 1.1601563 0.3601074 -5.1007385 0.7099609 1.1069336 -5.8494759 -0.1058350 1.0937500 -5.1590958 0.8819580 0.8383789 -3.6020660 -0.2211914 0.8256836 -3.6187439 0.9051514 -0.1259766 4.1866493 0.6966553 -0.6970215 6.2774429 0.9183350 -0.3598633 6.5039291 1.0074463 -0.4167480 1.7091789 0.3009033 -0.7946777 -3.5472832 -0.4860840 -0.6850586 6.1196365 -0.2976074 1.5512695 -6.2651329 0.9648438 1.2739258 -6.3560486 } } phBound { Type BoundBVH AABBMin 1372.7956543 2753.9353027 49.3235512 AABBMax 1377.7822266 2758.7746582 91.6818695 Radius 21.4622 Centroid 1375.2889404 2756.3549805 70.5027084 CG 1375.3798828 2756.4040527 70.5071259 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.744703 } } ComputePolyNeighbors True Vertices 2 { 1376.6811523 2757.6760254 90.8705826 1373.8967285 2755.0339355 50.1348343 } } phBound { Type BoundBVH AABBMin 1372.8280029 2753.6450195 50.5391045 AABBMax 1375.1782227 2756.2944336 58.5863266 Radius 4.39604 Centroid 1374.0031738 2754.9697266 54.5627136 CG 1038.8614502 2082.7006836 41.8422241 Margin 0.005 GeometryCenter 1374.0031738 2754.9697266 54.5627136 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 87 { Tri 0 { Vertices 29 30 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 29 17 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 17 16 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 19 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 40 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 18 35 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 51 40 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 29 52 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 43 22 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 29 43 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 20 22 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 29 20 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 26 17 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 21 22 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 24 25 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 10 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 24 8 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 1 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 18 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 36 18 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 18 17 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 17 26 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 26 20 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 27 20 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 20 21 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 21 25 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 3 25 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 3 10 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 1 9 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 35 34 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 1 51 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 28 27 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 41 5 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 41 36 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 41 27 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 34 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 27 3 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 1 0 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 3 0 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 47 36 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 34 36 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 7 5 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 5 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 48 7 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 48 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 49 48 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 49 3 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 0 2 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 44 2 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 47 2 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 47 12 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 45 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 4 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 5 45 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 4 6 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 6 48 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 39 48 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 39 49 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 39 44 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 44 23 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 45 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 12 47 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 23 2 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 4 15 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 50 14 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 14 15 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 31 50 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 32 31 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 48 39 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 42 32 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 37 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 33 50 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 14 50 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 31 32 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 38 42 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 15 46 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 46 15 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 13 12 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 12 11 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 11 38 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 37 23 38 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 53 { 0.8806152 0.4887695 -1.0538940 0.7126465 0.7036133 -1.5383186 0.5761719 0.9558105 -0.1723099 0.8526611 0.0234375 -1.4812126 -0.3808594 0.2194824 2.1757736 -0.4306641 0.1000977 0.3420296 -0.2287598 -0.2214355 0.7707062 -0.2401123 -0.1801758 -0.0948067 0.8240967 0.7797852 -4.0179214 0.3706055 0.8718262 -4.0098877 0.8959961 0.4260254 -3.4191589 0.4050293 1.3247070 3.6108780 0.3619385 1.1594238 1.1813354 0.1132813 1.1411133 3.1378250 -0.0267334 0.0769043 3.2503090 -0.1829834 0.6813965 3.4264526 -1.0373535 0.2563477 -3.8610611 -0.4597168 -0.3652344 -3.3536453 -0.8198242 0.4838867 -3.5255890 -1.1751709 0.8496094 -3.8280602 0.3061523 -0.6730957 -3.5755234 0.5369873 -0.6303711 -3.9677353 0.5201416 -1.0068359 -3.9574776 0.6021729 1.1833496 1.4276886 1.1750488 0.1467285 -4.0236092 0.8356934 -0.0002441 -3.6726837 -0.0797119 -0.6452637 -3.3791084 0.4119873 -0.3627930 -1.2590828 -0.4630127 -0.2038574 -1.9017296 -0.3170166 -0.6711426 -3.6381950 -0.6638184 -0.5781250 -3.9046974 0.3168945 -0.1625977 2.5411644 0.8725586 0.2263184 3.2496948 0.5270996 -0.0024414 3.5566139 -0.0974121 0.9328613 -0.6189117 -0.5858154 0.6770020 -3.3494415 -0.6915283 0.4860840 -1.2514191 0.9365234 0.6420898 1.7808418 0.9328613 1.0341797 4.0236130 0.9392090 0.4616699 2.2474670 -0.8635254 0.9301758 -3.7788620 -0.3117676 -0.3093262 -0.8100128 1.0147705 0.6740723 3.3243523 0.1690674 -1.2084961 -3.9807167 0.9993896 0.4501953 0.5184174 -0.2777100 0.9045410 1.5681114 -0.0119629 1.1828613 1.7171822 -0.2202148 0.8481445 0.5263290 0.2270508 -0.3093262 0.9024734 0.8471680 -0.0295410 0.6148338 -0.0482178 -0.1987305 2.4466019 0.0457764 0.8940430 -3.9996262 -0.6123047 -1.3247070 -3.8889999 } } phBound { Type BoundBVH AABBMin 1402.9687500 2786.0991211 52.5476990 AABBMax 1406.1041260 2789.7492676 61.9681015 Radius 5.2891 Centroid 1404.5363770 2787.9243164 57.2579002 CG 983.7644653 1948.4525146 37.4823761 Margin 0.005 GeometryCenter 1404.5363770 2787.9243164 57.2579002 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 117 { Tri 0 { Vertices 44 58 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 58 18 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 62 58 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 62 43 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 43 62 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 10 62 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 4 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 61 62 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 61 11 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 11 61 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 37 31 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 32 31 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 58 44 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 44 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 17 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 17 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 28 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 55 28 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 68 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 32 37 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 36 29 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 27 29 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 29 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 27 36 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 28 54 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 28 27 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 43 10 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 4 3 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 44 6 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 43 6 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 3 6 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 60 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 5 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 17 18 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 55 17 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 54 55 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 54 59 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 59 17 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 45 8 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 8 7 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 47 59 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 4 11 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 31 60 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 22 60 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 32 29 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 47 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 47 29 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 47 26 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 30 22 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 22 30 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 23 30 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 46 23 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 7 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 46 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 60 22 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 53 52 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 52 53 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 6 5 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 66 5 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 66 45 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 66 1 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 8 45 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 38 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 38 8 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 52 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 65 1 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 24 25 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 60 53 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 25 53 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 53 25 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 25 24 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 48 49 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 50 51 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 49 50 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 20 9 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 20 19 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 7 14 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 9 14 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 14 9 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 24 46 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 40 48 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 40 24 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 65 52 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 2 65 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 51 42 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 51 64 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 63 42 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 51 50 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 34 63 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 35 64 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 48 50 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 50 48 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 40 56 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 56 40 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 56 35 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 64 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 35 56 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 41 2 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 2 1 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 0 39 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 38 1 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 38 39 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 39 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 13 57 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 40 14 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 12 13 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 19 12 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 12 19 21 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 69 { -0.7482910 -0.0463867 4.2203598 -1.0502930 0.0517578 2.4604797 -0.7550049 -0.3156738 4.0293922 -0.6982422 -1.1525879 -1.2589149 0.1870117 -1.2956543 -2.3506966 -0.5577393 -1.2072754 0.5353470 -1.2260742 -0.7392578 -0.5045776 0.3339844 0.9904785 0.1467667 -0.8688965 0.6254883 -0.4979324 0.4082031 0.7993164 1.2603569 -0.4569092 -1.3208008 -2.7213631 -0.1555176 -1.1379395 -3.8459358 1.0136719 0.2436523 3.8846474 1.2414551 -0.0979004 4.1761551 1.1647949 0.2363281 2.6254463 -1.3698730 1.3500977 -4.3115082 -1.5676270 0.5769043 -4.4214363 -1.5159912 0.2155762 -2.9836922 -1.5349121 -0.1948242 -4.2426033 0.4119873 0.8244629 2.6188011 -0.2750244 0.7709961 2.8575821 0.3344727 0.6809082 4.7012444 1.2432861 -0.5246582 -0.5483475 1.3200684 0.3010254 -0.5448799 1.1901855 -0.3166504 0.1536980 0.8513184 -0.9245605 0.4680290 0.4420166 1.0102539 -2.9576874 0.6530762 0.8864746 -3.6302643 -0.3208008 1.3493652 -3.5012703 1.0095215 0.2763672 -2.9254761 1.0111084 -0.4165039 -1.6086349 0.5535889 -0.8898926 -3.3682251 0.9749756 -0.4611816 -2.9433899 0.8886719 -1.3354492 4.3272552 0.6108398 -1.4885254 3.9762306 0.6518555 -1.6230469 3.6535225 1.5677490 0.1237793 -4.3804131 1.4499512 -0.3427734 -4.3209000 -0.7408447 0.4519043 2.3707733 -0.3922119 0.4291992 4.4641991 1.2061768 -0.3015137 2.2487106 -0.6857910 -0.3210449 4.7102013 -0.4665527 -1.2250977 4.2335052 -1.0089111 -0.9763184 -1.6041565 -1.3671875 -0.6860352 -1.9943275 -1.3469238 -0.2858887 -0.8147202 0.8526611 0.7312012 -0.5157013 0.4808350 0.8376465 -1.5719452 1.0410156 -0.9052734 2.5971336 0.8093262 -1.0732422 2.2748566 0.5130615 -1.4321289 3.1932945 -0.1097412 -1.3579102 3.0021820 -0.5815430 -1.1552734 2.3485298 0.2276611 -1.3615723 1.5921669 -0.1351318 1.1242676 -2.8588829 -0.8364258 0.9357910 -2.8737602 1.1757813 -1.2492676 4.1001740 1.3830566 -0.6721191 3.8729477 -1.3142090 -0.8110352 -3.8405914 -0.6822510 0.8125000 -1.8713989 0.7386475 -1.0678711 -0.8473663 0.4570313 -1.1325684 -4.7102013 -0.5634766 -1.1384277 -3.8788719 0.0642090 -1.5056152 4.2206497 0.4609375 -1.8251953 3.5964622 -0.9981689 -0.7751465 2.3356743 -0.9230957 -0.6638184 1.9790154 -0.7072754 -1.0402832 -4.5657463 0.1302490 1.8249512 -4.4582748 } } phBound { Type BoundBVH AABBMin 1402.3520508 2781.9909668 50.3888054 AABBMax 1408.1101074 2791.3266602 114.9316330 Radius 32.7341 Centroid 1405.2310791 2786.6586914 82.6602173 CG 1405.1715088 2787.7802734 60.0311317 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 4 { Capsule 0 { MaterialIndex 0 CenterTop 5 CenterBottom 6 Radius 0.674214 } Capsule 1 { MaterialIndex 0 CenterTop 3 CenterBottom 4 Radius 0.674214 } Sphere 2 { MaterialIndex 0 Center 2 Radius 2.05608 } Capsule 3 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.57375 } } ComputePolyNeighbors True Vertices 7 { 1406.0468750 2784.1184082 113.2483826 1404.5166016 2788.2155762 52.8229713 1404.4080811 2788.1672363 52.4448853 1407.0119629 2787.2912598 52.2410774 1406.2250977 2787.6403809 52.4370079 1404.2004395 2789.5590820 52.3720284 1404.4143066 2790.4130859 52.2302513 } } phBound { Type BoundBVH AABBMin 1425.6286621 2768.2221680 47.0533600 AABBMax 1431.2375488 2773.7424316 99.1498260 Radius 26.3438 Centroid 1428.4331055 2770.9824219 73.1015930 CG 1333.5317383 2585.5905762 64.7038193 Margin 0.005 GeometryCenter 1427.4962158 2771.7458496 55.6424866 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 109 { Sphere 0 { MaterialIndex 1 Center 66 Radius 1.79397 } Capsule 1 { MaterialIndex 1 CenterTop 64 CenterBottom 65 Radius 0.901917 } Tri 2 { Vertices 27 25 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 39 42 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 11 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 38 25 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 11 12 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 25 51 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 11 42 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 24 59 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 52 59 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 15 59 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 59 15 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 13 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 9 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 14 13 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 36 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 27 38 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 24 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 24 50 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 26 27 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 27 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 10 55 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 10 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 24 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 22 52 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 22 36 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 15 52 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 55 10 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 53 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 36 53 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 13 54 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 36 54 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 12 55 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 36 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 36 22 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 34 22 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 22 24 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 26 37 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 37 20 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 56 12 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 17 57 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 55 53 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 17 53 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 53 36 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 35 48 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 49 35 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 35 49 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 12 56 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 56 46 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 37 26 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 37 46 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 20 37 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 23 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 20 21 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 49 22 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 44 18 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 57 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 56 57 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 46 56 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 46 19 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 23 46 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 46 47 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 19 56 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 18 47 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 19 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 18 32 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 35 43 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 43 35 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 35 4 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 49 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 30 3 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 30 49 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 32 31 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 30 23 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 30 21 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 43 17 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 3 2 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 44 17 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 0 2 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 44 43 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 7 0 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 3 30 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 18 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 18 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 18 44 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 32 33 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 1 29 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 2 1 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 6 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 0 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 33 8 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 8 7 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 8 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 60 29 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 28 29 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 40 44 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 40 29 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 41 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 8 5 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 8 45 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 33 45 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 60 61 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 5 62 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 62 5 45 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 67 { 1.3101807 -0.4255371 3.5107956 1.0366211 -1.0981445 5.8703842 1.2833252 -0.6425781 3.6839828 1.0880127 -0.2045898 2.8768044 1.0789795 -0.4577637 0.9064941 0.8038330 0.3371582 5.5152550 1.3045654 -0.4672852 5.8362236 0.6776123 0.2441406 4.5944519 0.1718750 0.3493652 4.9336929 -0.5449219 -0.9958496 -5.9347458 -0.3588867 -0.7912598 -3.3113785 -0.8117676 -0.6159668 -4.6564255 -1.0057373 -0.3920898 -3.6418839 0.3526611 -0.7145996 -3.3511047 0.5969238 -0.4260254 -5.7091064 0.8707275 -0.0197754 -5.3674850 -0.6859131 -0.8281250 2.6297150 -0.3114014 -1.1311035 2.3238449 -0.6629639 -0.5974121 2.8632927 -1.0012207 -0.1015625 2.1538239 0.4097900 0.8603516 -1.0884361 0.7126465 0.6579590 0.8477020 0.7947998 0.4941406 -2.2396355 0.0297852 0.8320313 0.7825623 -0.0948486 1.2307129 -3.6498260 -0.9599609 0.8647461 -3.9143867 -0.7574463 0.8405762 -2.4914780 -1.1932373 0.1713867 -3.9779434 0.6403809 -1.3730469 6.2342529 0.2590332 -1.2824707 4.2480621 0.5751953 0.3842773 3.1787033 -0.0205078 0.5117188 2.8060951 -0.4660645 0.3305664 3.1278534 -0.1938477 0.1157227 6.4098358 0.9306641 -0.2885742 -1.6032562 0.8009033 -0.6186523 -0.4576263 0.5762939 -0.7385254 -2.6249542 -0.1871338 1.1184082 -2.1180763 -1.1540527 0.3308105 -6.1254158 -1.3101807 -0.0605469 -6.5727081 -0.6236572 -0.5810547 5.7114944 -0.5340576 -0.0769043 5.7011642 -0.9696045 -0.8586426 -6.0507355 0.3677979 -1.2932129 3.1961746 -0.0103760 -1.2849121 3.8818130 0.1284180 0.2812500 5.9689026 -0.3726807 0.6008301 0.8294334 -0.7745361 0.1440430 2.0569038 0.3106689 -1.1330566 0.9764137 0.9425049 0.3100586 0.7094650 -0.3790283 1.3730469 -5.5255890 -0.7376709 1.2319336 -5.5533981 0.7302246 0.3129883 -3.6530075 -0.1734619 -0.9724121 -1.5285759 -0.2572021 -1.1135254 -2.2785568 -0.7418213 -0.7790527 -2.5423279 -0.7121582 -0.2390137 1.4229050 -0.5617676 -0.7436523 1.0447311 -0.9536133 1.1218262 -6.4606857 0.7335205 1.0800781 -6.1460762 -0.2874756 -1.1606445 5.4739456 -0.4880371 -0.9506836 6.3264160 1.1059570 0.1169434 6.5727043 0.9428711 0.6860352 -5.9990959 2.4241943 -2.2145996 42.5442200 -0.2252198 -0.0168458 -6.2716045 -0.0736084 0.2026367 -6.7951584 } } phBound { Type BoundBVH AABBMin 1380.1414795 2870.0371094 44.1912231 AABBMax 1381.5992432 2871.6970215 50.3179359 Radius 3.25642 Centroid 1380.8703613 2870.8671875 47.2545776 CG 1027.2965088 2136.6560059 41.1761742 Margin 0.005 GeometryCenter 1380.8703613 2870.8671875 47.2545776 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 137 { Tri 0 { Vertices 69 73 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 17 68 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 68 17 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 63 61 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 69 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 15 17 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 16 15 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 45 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 45 17 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 45 63 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 45 59 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 45 1 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 63 59 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 61 59 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 59 1 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 73 46 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 46 73 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 73 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 47 46 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 42 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 54 44 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 42 43 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 54 42 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 39 18 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 39 15 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 42 39 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 61 72 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 61 60 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 72 33 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 34 72 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 33 72 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 45 47 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 45 62 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 2 45 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 45 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 60 1 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 0 49 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 60 49 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 58 47 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 67 58 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 32 44 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 32 67 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 32 54 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 55 54 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 33 32 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 32 33 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 58 62 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 62 56 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 62 58 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 56 58 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 57 58 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 58 67 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 9 67 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 2 74 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 56 57 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 48 0 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 0 48 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 30 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 32 30 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 34 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 34 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 30 31 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 30 10 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 7 67 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 48 31 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 2 70 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 2 57 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 2 71 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 48 51 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 31 51 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 8 7 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 50 10 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 10 50 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 6 57 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 6 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 8 52 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 70 57 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 23 57 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 52 8 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 51 48 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 26 28 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 71 70 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 25 71 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 26 71 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 48 71 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 3 6 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 3 52 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 51 28 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 50 28 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 23 24 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 29 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 26 25 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 27 26 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 3 5 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 40 4 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 3 28 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 41 4 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 41 40 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 26 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 41 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 6 5 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 35 23 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 53 35 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 22 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 23 35 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 29 24 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 24 22 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 21 38 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 38 27 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 5 4 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 41 27 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 4 41 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 12 14 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 117 { Vertices 38 20 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 118 { Vertices 27 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 119 { Vertices 13 27 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 120 { Vertices 35 37 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 121 { Vertices 19 22 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 122 { Vertices 64 35 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 123 { Vertices 20 38 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 124 { Vertices 53 4 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 125 { Vertices 14 64 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 126 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 127 { Vertices 11 14 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 128 { Vertices 35 36 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 129 { Vertices 19 37 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 130 { Vertices 22 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 131 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 132 { Vertices 64 66 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 133 { Vertices 36 35 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 134 { Vertices 64 65 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 135 { Vertices 65 64 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 136 { Vertices 64 14 11 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 75 { -0.3823242 0.2199707 -1.2576675 -0.3931885 0.1674805 -2.1073799 -0.5361328 -0.0529785 -1.1644211 0.4061279 -0.0764160 0.6066246 0.4040527 0.0407715 1.2309875 0.2172852 -0.2192383 0.7901230 0.0041504 -0.2231445 0.5702972 0.3398438 -0.3403320 -0.8768158 0.3708496 -0.2807617 -0.6205711 0.1296387 -0.4943848 -0.9867287 0.4052734 0.1506348 -0.9808273 0.4669189 0.5009766 2.7066574 0.4945068 0.4462891 1.7096786 0.2553711 0.7358398 2.6990738 0.3492432 0.1899414 2.2698174 -0.0952148 0.2893066 -2.9969749 -0.4990234 0.1337891 -3.0367661 -0.5545654 -0.3320313 -2.9116859 0.3681641 0.5017090 -3.0633545 -0.4383545 0.7653809 2.7013206 0.0170898 0.8298340 2.6867142 -0.2019043 0.7182617 2.2596130 -0.3974609 0.4255371 2.2378922 -0.4243164 0.1328125 0.8961983 -0.5017090 0.2153320 0.9945946 -0.3533936 0.5307617 0.8115616 -0.0018311 0.6262207 0.6338692 0.1723633 0.6445313 1.0605011 0.4559326 0.3857422 0.6185150 -0.3168945 0.6396484 0.9224129 0.4458008 0.2553711 -1.1892319 0.2359619 0.3718262 -1.0630302 0.4406738 0.1071777 -1.7841988 0.4068604 0.2380371 -1.9133034 0.2160645 0.3659668 -1.5476151 -0.4228516 0.1740723 2.5686569 -0.3439941 0.2805176 3.0164528 -0.5061035 0.3117676 2.5585480 -0.2310791 0.6975098 1.3552246 0.7288818 0.1794434 -3.0286217 0.4422607 0.2250977 0.8043556 0.3750000 0.4052734 1.1271629 0.5104980 -0.1743164 -2.9331284 0.6538086 -0.3808594 -2.9779701 0.3327637 -0.4270020 -2.1105652 -0.4888916 -0.4577637 -2.1237640 0.0035400 -0.5942383 -2.1429558 0.1488037 -0.6401367 -1.9149895 -0.1204834 0.5275879 -0.4473724 -0.0181885 0.4699707 -1.4630737 0.5112305 0.1120605 -0.3981247 0.2823486 0.4118652 -0.4002800 0.2189941 -0.3002930 0.2692108 0.0368652 -0.0502930 1.6231728 0.4980469 0.0446777 -2.0252762 0.5473633 0.0852051 -1.8689270 -0.2691650 -0.5019531 -1.3708572 -0.1835938 -0.4462891 -1.2153511 0.1193848 -0.4338379 -1.2674980 -0.4567871 0.2192383 -2.3343201 -0.1132813 0.3159180 -2.3231812 -0.4086914 0.0620117 -2.5159454 -0.0601807 -0.5173340 -1.7063980 -0.5465088 -0.1511230 -2.4033203 0.0225830 -0.0202637 2.6800690 0.3378906 0.3720703 3.0249710 0.0596924 0.1215820 3.0633583 0.4394531 -0.2033691 -1.1794014 -0.4321289 -0.5493164 -2.8916512 -0.7288818 -0.3750000 -2.9849930 -0.4101563 -0.0024414 -0.1859779 -0.2322998 0.5344238 0.0829964 0.3074951 0.2834473 -2.8200302 0.3538818 -0.8300781 -2.9337807 -0.4686279 -0.2358398 -1.5801964 } } phBound { Type BoundBVH AABBMin 1380.0339355 2869.9240723 44.0909691 AABBMax 1384.4240723 2872.9836426 59.1672249 Radius 7.99887 Centroid 1382.2290039 2871.4538574 51.6290970 CG 1381.3104248 2871.3376465 52.1319695 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 3 { Capsule 0 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.708421 } Capsule 1 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.66122 } Capsule 2 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.745807 } } ComputePolyNeighbors True Vertices 6 { 1383.1920166 2871.2775879 58.1243439 1381.3441162 2871.9323730 55.4655457 1380.9759521 2872.0549316 54.1904106 1380.9219971 2871.2341309 50.5188637 1380.8395996 2871.4038086 49.6305809 1380.9187012 2870.8022461 44.8834877 } } phBound { Type BoundBVH AABBMin 1276.0211182 2801.8930664 44.0017014 AABBMax 1279.8289795 2805.7011719 94.3701324 Radius 25.3278 Centroid 1277.9250488 2803.7971191 69.1859131 CG 1166.9775391 2560.5412598 51.3872452 Margin 0.005 GeometryCenter 1278.0261230 2803.5654297 52.4245224 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 109 { Sphere 0 { MaterialIndex 1 Center 66 Radius 1.90395 } Capsule 1 { MaterialIndex 1 CenterTop 64 CenterBottom 65 Radius 0.95721 } Tri 2 { Vertices 52 59 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 59 15 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 24 59 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 25 51 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 38 25 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 27 25 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 27 38 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 11 12 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 11 38 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 39 42 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 11 42 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 24 50 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 24 51 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 10 12 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 27 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 26 27 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 24 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 22 52 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 26 37 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 15 59 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 15 52 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 36 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 14 13 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 13 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 9 10 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 10 55 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 22 24 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 37 20 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 34 22 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 22 36 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 36 22 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 36 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 36 54 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 36 53 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 13 54 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 53 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 55 10 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 12 55 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 37 26 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 37 46 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 20 37 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 23 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 20 21 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 49 22 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 49 35 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 35 49 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 56 46 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 12 56 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 56 12 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 17 57 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 55 53 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 17 53 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 53 36 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 35 48 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 35 4 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 49 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 23 46 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 32 31 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 30 49 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 30 3 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 30 23 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 30 21 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 3 2 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 0 2 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 3 30 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 7 0 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 46 56 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 46 19 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 56 57 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 46 47 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 19 56 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 18 47 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 19 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 18 32 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 35 43 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 43 35 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 57 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 43 17 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 44 17 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 44 18 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 44 43 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 41 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 32 33 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 33 8 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 18 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 18 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 8 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 8 7 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 18 44 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 0 7 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 6 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 1 29 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 2 1 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 5 6 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 8 5 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 8 45 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 28 29 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 60 29 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 40 44 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 40 29 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 33 45 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 60 61 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 5 62 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 62 5 45 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 67 { -0.7780762 0.9414063 3.4440498 -0.0930176 1.1457520 5.7249489 -0.6101074 1.0900879 3.6188507 -0.7451172 0.6564941 2.8172302 -0.5770264 0.9982910 0.9406204 -0.8612061 -0.1655273 5.3091202 -0.7354736 0.8076172 5.6741180 -0.6990967 -0.1081543 4.4258690 -0.3508301 -0.5556641 4.7246475 1.0919189 0.8432617 -5.6587219 0.8133545 0.6132813 -3.1468124 1.0637207 0.2622070 -4.4620590 1.0784912 -0.1230469 -3.5087433 0.1749268 1.0268555 -3.1583633 -0.2294922 1.1191406 -5.4215393 -0.7250977 0.9431152 -5.1004333 1.1331787 0.0051270 2.5346184 1.0253906 0.5256348 2.2712708 0.9613037 -0.1860352 2.7494698 0.9058838 -0.7692871 2.0325470 -0.9144287 -0.3913574 -1.0592003 -1.0205078 -0.1599121 0.8174095 -0.9923096 0.2480469 -2.1295815 -0.5738525 -0.7539063 0.7188416 -0.7565918 -0.8510742 -3.5518608 0.1999512 -1.1079102 -3.8244629 0.0552979 -1.0537109 -2.4522324 0.8554688 -0.6879883 -3.8645020 0.4190674 1.0822754 6.0691605 0.6645508 0.8942871 4.1455688 -0.7142334 -0.1914063 3.0582581 -0.3098145 -0.6667480 2.6709213 0.1800537 -0.8374023 2.9681587 0.1132813 -0.7114258 6.1346092 -0.5786133 0.9377441 -1.4788818 -0.2462158 1.0419922 -0.3715515 0.0096436 1.1442871 -2.4522324 -0.5989990 -0.9287109 -2.0833702 0.7073975 -0.6411133 -5.9274712 1.0955811 -0.3913574 -6.3448410 0.9301758 -0.3750000 5.4800682 0.5195313 -0.7292480 5.4500389 1.3499756 0.4555664 -5.7942505 0.5773926 1.0500488 3.1421890 0.8867188 0.7424316 3.7836494 -0.2648926 -0.6018066 5.7180099 -0.0874023 -0.8349609 0.7573395 0.5544434 -0.8137207 1.9378281 0.5079346 1.0371094 1.0060692 -0.9782715 0.2893066 0.7103691 -0.6254883 -1.0251465 -5.3676414 -0.2355957 -1.1459961 -5.4030609 -0.8240967 0.4541016 -3.4787102 0.7890625 0.7595215 -1.4219017 0.9490967 0.8730469 -2.1380501 1.1241455 0.2934570 -2.4260483 0.7561035 -0.4121094 1.3502808 0.9675293 0.1303711 1.0168495 0.0120850 -1.1350098 -6.2762985 -1.3499756 0.0014648 -5.9028320 1.0390625 0.3427734 5.2921791 1.0679932 -0.0239258 6.0914879 -0.9587402 0.1420898 6.3448410 -1.2586670 0.4548340 -5.7349625 -0.3325195 0.3935548 40.9778824 0.1728515 0.2744140 -6.0129337 -0.1010742 0.2316895 -6.5188713 } } phBound { Type BoundBVH AABBMin 1204.2073975 2816.9714355 55.0863571 AABBMax 1227.5826416 2840.3464355 78.4615555 Radius 20.2435 Centroid 1215.8950195 2828.6589355 66.7739563 CG 1215.8894043 2828.6582031 66.7742233 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 52 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Sphere 0 { MaterialIndex 0 Center 0 Radius 11.6876 } } ComputePolyNeighbors True Vertices 1 { 1215.8950195 2828.6589355 66.7739563 } } phBound { Type BoundBVH AABBMin 1205.0949707 2821.3520508 46.5833893 AABBMax 1225.1668701 2834.0393066 72.4539108 Radius 17.558 Centroid 1215.1308594 2827.6958008 59.5186501 CG 1215.1696777 2827.4587402 58.4448433 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 25 { Capsule 0 { MaterialIndex 1 CenterTop 48 CenterBottom 49 Radius 0.305262 } Capsule 1 { MaterialIndex 0 CenterTop 46 CenterBottom 47 Radius 0.347251 } Capsule 2 { MaterialIndex 1 CenterTop 44 CenterBottom 45 Radius 0.307061 } Capsule 3 { MaterialIndex 1 CenterTop 42 CenterBottom 43 Radius 0.643354 } Capsule 4 { MaterialIndex 1 CenterTop 40 CenterBottom 41 Radius 0.443925 } Capsule 5 { MaterialIndex 1 CenterTop 38 CenterBottom 39 Radius 0.732844 } Capsule 6 { MaterialIndex 1 CenterTop 36 CenterBottom 37 Radius 0.482675 } Capsule 7 { MaterialIndex 1 CenterTop 34 CenterBottom 35 Radius 0.9719 } Capsule 8 { MaterialIndex 0 CenterTop 32 CenterBottom 33 Radius 0.395165 } Capsule 9 { MaterialIndex 0 CenterTop 30 CenterBottom 31 Radius 1.23776 } Capsule 10 { MaterialIndex 0 CenterTop 28 CenterBottom 29 Radius 0.402261 } Capsule 11 { MaterialIndex 1 CenterTop 26 CenterBottom 27 Radius 0.994726 } Capsule 12 { MaterialIndex 0 CenterTop 24 CenterBottom 25 Radius 0.790586 } Capsule 13 { MaterialIndex 0 CenterTop 22 CenterBottom 23 Radius 0.565385 } Capsule 14 { MaterialIndex 0 CenterTop 20 CenterBottom 21 Radius 0.424281 } Capsule 15 { MaterialIndex 0 CenterTop 18 CenterBottom 19 Radius 0.415281 } Capsule 16 { MaterialIndex 0 CenterTop 16 CenterBottom 17 Radius 0.5402 } Capsule 17 { MaterialIndex 0 CenterTop 14 CenterBottom 15 Radius 0.264905 } Capsule 18 { MaterialIndex 1 CenterTop 12 CenterBottom 13 Radius 2.22957 } Capsule 19 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.467319 } Capsule 20 { MaterialIndex 0 CenterTop 8 CenterBottom 9 Radius 0.383555 } Capsule 21 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.34963 } Capsule 22 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.245742 } Capsule 23 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.356834 } Capsule 24 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.679832 } } ComputePolyNeighbors True Vertices 50 { 1224.0189209 2832.2045898 71.5156555 1216.6282959 2828.2514648 58.3062744 1216.2238770 2829.8544922 60.6643143 1215.6445313 2829.5317383 64.0002670 1219.9824219 2826.5783691 61.5011330 1217.7871094 2828.8654785 59.6750526 1216.4532471 2829.6982422 58.1956635 1216.2935791 2829.7675781 60.0815430 1221.5129395 2831.1765137 61.1935272 1218.2712402 2828.6198730 56.1593018 1215.8275146 2827.3554688 56.7213516 1214.7923584 2825.3081055 59.4831467 1216.5428467 2827.8750000 56.5732231 1213.3883057 2826.8247070 61.6625557 1214.7692871 2825.3288574 60.0279961 1213.7490234 2825.7990723 63.4581490 1215.4096680 2828.0852051 57.8849335 1211.0590820 2828.2995605 67.2830658 1212.4859619 2827.2385254 59.5667877 1207.4925537 2822.5305176 64.4200439 1212.1087646 2827.0800781 59.0121651 1207.4473877 2822.9091797 59.5972710 1211.9962158 2827.7980957 58.8995934 1205.9007568 2826.6911621 60.9855919 1211.0351563 2828.1228027 62.0057373 1206.8532715 2824.5949707 67.0102539 1220.4437256 2827.2062988 58.6537476 1217.3883057 2827.8981934 53.5390015 1217.0136719 2826.3234863 55.9482384 1216.5957031 2827.3132324 54.7823143 1216.6503906 2828.7199707 58.9441528 1216.3793945 2828.3117676 54.7752838 1216.9721680 2833.3671875 57.3631401 1215.6979980 2830.6933594 54.9382668 1216.2496338 2828.2187500 47.5874405 1216.1483154 2828.0556641 53.2904129 1214.8950195 2831.9082031 57.9935913 1215.8374023 2828.8378906 52.2835693 1215.2601318 2827.9814453 53.8974113 1212.5279541 2827.3037109 59.2220497 1213.4196777 2827.3542480 55.6429825 1210.0905762 2828.0773926 56.0408707 1215.0737305 2827.1035156 54.2175293 1214.1098633 2824.3681641 54.1905594 1217.4652100 2824.6127930 56.2675705 1216.9019775 2826.5458984 55.6957474 1217.4160156 2824.6735840 59.1649857 1216.9335938 2826.4274902 56.1374130 1218.4187012 2821.8596191 59.5546684 1217.5310059 2824.2590332 56.2652245 } } phBound { Type BoundBVH AABBMin 1214.5711670 2826.8845215 47.6683311 AABBMax 1218.2829590 2830.0576172 53.5698433 Radius 3.82994 Centroid 1216.4270020 2828.4711914 50.6190872 CG 908.1972046 2112.6284180 41.6796570 Margin 0.005 GeometryCenter 1216.4270020 2828.4711914 50.6190872 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 113 { Tri 0 { Vertices 53 19 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 43 62 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 62 43 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 53 62 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 45 46 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 43 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 46 45 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 44 11 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 43 65 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 11 44 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 65 12 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 65 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 18 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 18 21 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 21 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 19 53 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 20 53 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 53 26 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 21 26 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 53 46 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 15 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 23 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 23 21 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 34 24 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 22 16 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 50 69 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 2 1 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 14 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 14 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 58 56 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 58 55 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 0 59 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 14 59 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 54 55 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 29 14 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 29 42 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 14 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 54 56 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 50 47 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 24 50 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 50 24 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 49 50 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 50 61 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 49 8 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 50 8 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 29 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 56 28 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 28 9 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 29 9 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 28 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 49 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 26 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 5 46 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 34 26 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 24 34 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 13 14 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 47 48 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 47 24 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 52 48 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 51 48 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 33 42 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 33 29 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 3 11 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 46 11 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 5 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 35 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 25 63 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 52 34 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 35 25 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 11 13 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 64 13 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 42 41 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 41 42 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 51 33 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 30 33 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 52 63 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 63 68 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 4 6 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 6 64 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 4 3 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 64 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 5 4 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 5 27 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 57 25 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 25 57 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 38 39 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 39 38 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 27 38 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 67 57 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 39 27 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 71 40 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 6 41 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 39 41 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 33 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 41 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 41 32 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 36 37 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 32 70 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 71 41 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 72 41 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 37 66 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 30 51 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 68 60 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 30 60 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 70 32 31 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 73 { 0.4097900 -0.7944336 -2.6210594 0.3348389 -1.0974121 -2.3946571 0.5006104 -1.5866699 -2.7193108 -0.9442139 -0.6838379 0.5609169 -0.9101563 -0.8178711 1.0800972 -1.0511475 -0.3894043 0.0495758 -0.5804443 -1.0947266 0.9412270 1.5749512 1.4208984 -2.8900604 0.7752686 1.0859375 -2.9280624 1.0805664 0.6979980 -2.5443306 1.8559570 1.1306152 -2.8509750 -0.3668213 -0.9177246 -1.5243492 -0.0844727 -0.8811035 -2.1495209 0.0114746 -0.8215332 -1.1452065 0.5963135 -0.7309570 -2.1710472 -1.0209961 0.8395996 -2.8749313 -0.5935059 0.7302246 -2.8922195 -0.8795166 1.3950195 -2.9507561 -1.4006348 0.4328613 -2.8748398 -1.8558350 -0.0405273 -2.9045601 -1.1370850 0.1284180 -2.4602165 -0.8417969 0.5908203 -2.2240906 0.0196533 0.5534668 -2.7968521 -0.5277100 0.3979492 -2.3474655 -0.0341797 0.3010254 -1.8766479 -0.9724121 0.1784668 0.5439873 -1.0338135 0.1591797 -1.4223137 -1.1992188 -0.0451660 1.9142036 1.4960938 0.4545898 -2.8207169 0.6784668 0.2888184 -2.0909843 0.3300781 0.4272461 1.0084114 0.3640137 0.4528809 2.4263535 0.6553955 0.2902832 1.4175377 0.4907227 -0.2104492 1.0546989 -0.6400146 0.5607910 -1.4457283 -1.0114746 0.4855957 -1.1173820 0.9752197 -0.0981445 2.6222267 1.0670166 -0.2595215 2.2524567 -1.3444824 -0.3059082 2.6480751 -0.8085938 -0.9882813 2.0029068 -1.4331055 -0.5263672 2.9507561 0.5270996 -0.7187500 1.4567146 0.4354248 -0.5041504 -1.1540337 -0.8461914 -1.0295410 -2.7253456 -0.4991455 -1.0026855 -2.4388733 -0.8048096 -0.7316895 -2.3537712 -0.9688721 -0.4284668 -1.5381279 0.4577637 0.3950195 -1.8226166 0.2918701 0.2026367 -0.8390160 0.6398926 0.8430176 -2.8686256 0.5657959 0.6738281 -2.3288231 0.1815186 0.3310547 -0.3794556 -0.3272705 0.5090332 -0.3680191 -1.1737061 -0.1894531 -2.0366821 0.5991211 -0.1816406 -2.3793488 0.7513428 -0.4123535 -2.1408768 0.6535645 -0.0239258 -2.6182671 -0.7866211 0.4995117 1.3886299 1.6522217 -0.5869141 -2.7487602 1.4572754 -0.9238281 -2.7132797 -0.1984863 0.4387207 2.1765366 0.2783203 0.6987305 -2.7710037 -1.3963623 -0.3005371 -2.6134033 -0.5488281 0.4179688 1.0787468 -0.3779297 -0.9062500 0.5822601 -0.0039063 -1.1982422 -2.6735611 1.4122314 -0.9553223 2.9413910 -0.8255615 0.5122070 2.3594437 -0.2362061 0.6135254 1.5982819 -0.0703125 1.5864258 -2.9007759 0.5776367 0.1357422 2.7083244 -0.3314209 -0.9826660 2.6416817 0.8311768 -0.9792480 2.8035126 } } phBound { Type BoundBVH AABBMin 1177.8533936 2893.7290039 41.1012115 AABBMax 1184.8546143 2900.3129883 47.3893509 Radius 5.74253 Centroid 1181.3540039 2897.0209961 44.2452812 CG 1181.3566895 2897.0039063 44.2449532 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 52 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE FLAG_NOT_COVER MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 2.92394 } } ComputePolyNeighbors True Vertices 2 { 1181.3756104 2897.0183105 44.2469788 1181.3323975 2897.0236816 44.2435837 } } phBound { Type BoundBVH AABBMin 1181.1846924 2896.1909180 38.2178421 AABBMax 1181.9708252 2896.7780762 40.0721397 Radius 1.04895 Centroid 1181.5777588 2896.4843750 39.1449890 CG 860.5411987 2106.7663574 30.7360096 Margin 0.005 GeometryCenter 1181.5777588 2896.4843750 39.1449890 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 158 { Tri 0 { Vertices 1 0 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 41 42 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 43 42 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 69 88 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 42 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 45 44 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 39 40 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 40 39 88 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 72 88 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 4 40 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 88 69 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 35 32 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 33 32 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 44 46 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 51 34 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 32 33 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 34 50 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 50 34 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 2 1 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 47 65 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 78 77 90 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 89 58 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 73 39 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 56 57 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 57 66 78 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 39 73 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 71 72 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 77 78 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 28 78 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 46 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 35 12 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 69 70 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 12 35 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 70 69 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 72 71 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 62 47 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 65 47 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 52 43 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 0 83 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 53 41 83 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 66 57 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 58 89 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 25 27 89 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 89 90 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 25 90 77 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 41 53 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 82 45 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 43 52 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 45 82 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 55 33 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 33 55 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 16 51 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 5 50 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 51 16 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 4 3 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 50 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 83 0 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 71 23 70 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 13 70 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 70 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 12 11 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 75 46 82 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 46 75 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 58 37 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 25 77 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 23 71 73 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 66 67 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 73 74 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 74 73 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 23 22 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 13 14 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 16 15 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 14 13 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 55 17 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 27 68 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 37 58 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 59 56 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 28 29 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 2 10 83 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 65 9 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 10 2 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 9 65 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 52 81 76 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 56 59 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 53 54 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 66 59 67 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 68 27 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 25 26 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 26 25 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 83 91 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 29 28 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 91 83 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 20 67 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 67 20 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 48 11 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 17 55 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 11 48 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 76 82 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 82 76 75 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 60 75 76 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 75 60 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 7 62 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 62 7 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 74 24 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 6 5 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 5 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 3 30 74 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 24 74 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 113 { Vertices 30 3 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 114 { Vertices 15 85 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 115 { Vertices 17 18 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 116 { Vertices 85 15 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 117 { Vertices 18 17 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 118 { Vertices 68 86 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 119 { Vertices 86 38 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 120 { Vertices 36 37 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 121 { Vertices 81 52 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 122 { Vertices 64 76 81 Siblings -1 -1 -1 MaterialIndex 0 } Tri 123 { Vertices 76 64 60 Siblings -1 -1 -1 MaterialIndex 0 } Tri 124 { Vertices 61 60 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 125 { Vertices 60 61 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 126 { Vertices 86 68 87 Siblings -1 -1 -1 MaterialIndex 0 } Tri 127 { Vertices 26 87 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 128 { Vertices 86 87 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 129 { Vertices 87 26 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 130 { Vertices 37 36 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 131 { Vertices 21 59 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 132 { Vertices 59 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 133 { Vertices 81 54 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 134 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 135 { Vertices 61 63 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 136 { Vertices 64 63 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 137 { Vertices 63 64 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 138 { Vertices 54 53 91 Siblings -1 -1 -1 MaterialIndex 0 } Tri 139 { Vertices 14 49 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 140 { Vertices 48 49 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 141 { Vertices 22 79 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 142 { Vertices 49 14 79 Siblings -1 -1 -1 MaterialIndex 0 } Tri 143 { Vertices 24 80 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 144 { Vertices 79 22 80 Siblings -1 -1 -1 MaterialIndex 0 } Tri 145 { Vertices 30 80 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 146 { Vertices 29 19 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 147 { Vertices 19 29 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 148 { Vertices 91 10 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 149 { Vertices 8 7 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 150 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 151 { Vertices 9 8 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 152 { Vertices 85 84 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 153 { Vertices 18 84 85 Siblings -1 -1 -1 MaterialIndex 0 } Tri 154 { Vertices 6 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 155 { Vertices 31 6 84 Siblings -1 -1 -1 MaterialIndex 0 } Tri 156 { Vertices 84 18 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 157 { Vertices 80 30 31 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 92 { -0.1998291 -0.1196289 -0.4847221 -0.1337891 -0.1669922 -0.9114914 -0.0900879 -0.1376953 -0.4750633 0.0842285 0.1833496 0.0340271 0.0795898 -0.0424805 -0.5826988 0.0277100 0.2116699 -0.1546631 0.0114746 0.2546387 0.4307518 -0.1300049 0.1245117 0.6586533 0.0336914 0.1208496 0.8629990 -0.0278320 0.1098633 0.6357880 0.0284424 0.0239258 0.6197853 -0.1914063 0.0844727 -0.1365547 -0.1862793 0.1267090 -0.3551712 -0.1396484 -0.0073242 -0.1331787 0.0300293 -0.0063477 0.2405930 -0.0997314 0.2009277 0.2603722 -0.0715332 0.2382813 -0.1517792 -0.1196289 0.1040039 0.2698860 -0.0147705 0.0786133 0.4709740 -0.1899414 -0.1137695 0.8955803 -0.1026611 -0.0517578 0.6566620 -0.2279053 -0.0214844 0.8790283 0.1121826 0.0451660 0.2186508 -0.0400391 -0.0363770 -0.1356316 0.1727295 0.2138672 0.3585777 0.0238037 -0.1110840 0.0364494 -0.0174561 -0.2031250 0.4124985 -0.0063477 -0.1962891 0.0335655 -0.0327148 -0.0056152 -0.1294594 0.0002441 -0.1184082 0.4154396 0.0974121 0.2705078 0.3859444 0.1932373 0.2431641 0.7366180 0.0340576 0.1936035 -0.9173737 0.0036621 0.2114258 -0.6091957 0.1940918 0.0627441 -0.8982544 -0.1008301 0.1779785 -0.6247101 -0.3796387 -0.0563965 0.8204079 -0.2016602 -0.1879883 0.2088165 -0.3930664 -0.1423340 0.8070869 -0.0252686 -0.0756836 -0.5979805 0.0642090 -0.0996094 -0.9006767 -0.2639160 -0.0300293 -0.4946136 -0.2166748 0.0295410 -0.9271469 -0.2454834 0.0800781 -0.4991112 -0.0198975 0.1130371 -0.9168549 -0.1556396 0.1450195 -0.4953613 -0.0489502 0.1286621 -0.4855881 0.0623779 -0.0832520 -0.9011688 -0.0660400 0.0170898 0.2619286 0.3564453 0.0917969 0.6647949 0.1307373 0.0549316 -0.5792694 0.0991211 0.1606445 -0.5905418 -0.2941895 0.0178223 -0.0340805 -0.2484131 -0.0786133 -0.0317154 -0.0432129 -0.1591797 0.8731766 -0.1629639 0.1867676 -0.1442223 -0.2203369 -0.1203613 0.0256920 -0.1511230 -0.1831055 -0.9119225 -0.1403809 -0.2297363 -0.1302681 -0.2077637 -0.0698242 0.3776665 -0.2197266 0.1330566 0.3178101 -0.2108154 0.0656738 0.6717720 -0.0643311 0.1313477 -0.0303001 -0.1317139 0.0139160 0.9271507 -0.2318115 -0.0317383 0.6700401 -0.0021973 -0.0756836 -0.4713707 -0.1888428 -0.0332031 0.0282326 -0.1091309 0.0058594 0.0321236 -0.0895996 -0.2536621 0.3992348 -0.1518555 0.0805664 -0.6275940 -0.1772461 0.0217285 -0.3481369 -0.0960693 -0.0478516 -0.3388214 -0.1202393 -0.0249023 -0.6163177 0.0089111 -0.0400391 -0.3321915 0.0998535 0.0869141 0.0376320 -0.1627197 0.1647949 -0.0327797 -0.2802734 0.0563965 0.3176346 0.0297852 -0.0524902 -0.2869492 -0.0379639 -0.0292969 -0.9119530 0.3930664 0.2351074 0.6278000 0.3355713 0.2937012 0.6588554 -0.1824951 -0.1120605 0.6552200 -0.2585449 0.1188965 -0.0346260 -0.1520996 -0.1137695 -0.0295792 0.2239990 0.1440430 0.7398758 -0.0345459 0.1748047 0.4656677 -0.2215576 -0.2282715 0.6304512 -0.2741699 -0.2309570 0.8366737 -0.0972900 0.0310059 -0.9199677 -0.0007324 -0.2934570 -0.8953705 0.0910645 -0.2346191 -0.8921432 0.1217041 -0.0605469 0.8091927 } } phBound { Type BoundBVH AABBMin 1179.6729736 2895.4704590 38.1819000 AABBMax 1183.8146973 2898.0805664 42.5477562 Radius 3.27976 Centroid 1181.7438965 2896.7753906 40.3648300 CG 1181.5568848 2895.8549805 40.7995110 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 15 { Capsule 0 { MaterialIndex 0 CenterTop 28 CenterBottom 29 Radius 0.273345 } Capsule 1 { MaterialIndex 0 CenterTop 26 CenterBottom 27 Radius 0.134987 } Capsule 2 { MaterialIndex 0 CenterTop 24 CenterBottom 25 Radius 0.177188 } Capsule 3 { MaterialIndex 0 CenterTop 22 CenterBottom 23 Radius 0.1623 } Capsule 4 { MaterialIndex 0 CenterTop 20 CenterBottom 21 Radius 0.0918914 } Capsule 5 { MaterialIndex 0 CenterTop 18 CenterBottom 19 Radius 0.131884 } Capsule 6 { MaterialIndex 0 CenterTop 16 CenterBottom 17 Radius 0.130527 } Capsule 7 { MaterialIndex 0 CenterTop 14 CenterBottom 15 Radius 0.100336 } Capsule 8 { MaterialIndex 0 CenterTop 12 CenterBottom 13 Radius 0.131884 } Capsule 9 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.1623 } Capsule 10 { MaterialIndex 0 CenterTop 8 CenterBottom 9 Radius 0.0918914 } Capsule 11 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.1623 } Capsule 12 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.100336 } Capsule 13 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.1623 } Capsule 14 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.130527 } } ComputePolyNeighbors True Vertices 30 { 1183.5902100 2897.8742676 41.8683281 1182.8580322 2897.4353027 41.1789360 1182.5332031 2895.7204590 41.6205330 1181.9121094 2896.0505371 41.0817680 1181.9616699 2896.0522461 42.2155533 1181.9938965 2896.4287109 41.3052979 1181.7917480 2896.0722656 41.2114601 1181.8552246 2896.3066406 40.6814232 1181.8059082 2896.9379883 42.4322243 1181.4636230 2896.6586914 41.0520439 1181.0787354 2895.8837891 41.8120766 1181.7962646 2896.0156250 41.2412529 1180.6389160 2895.8715820 41.1400795 1179.8791504 2895.7280273 42.1507072 1182.0241699 2896.4697266 41.2229919 1182.0463867 2896.6679688 40.2679520 1182.7978516 2897.3508301 41.1052933 1182.2944336 2896.8093262 40.3160019 1181.1431885 2896.2954102 40.2393608 1180.7159424 2895.9345703 41.0515785 1181.4528809 2896.6442871 40.9761353 1181.2839355 2896.4094238 40.2858124 1181.8107910 2896.3095703 40.6278458 1181.4528809 2896.5395508 39.5788956 1182.2189941 2896.7150879 40.2784805 1181.7097168 2896.6384277 39.5351791 1181.3970947 2896.3452148 39.6402740 1181.2498779 2896.3427734 40.0886688 1181.4916992 2896.5346680 39.3580971 1181.5688477 2896.4829102 38.4825630 } } phBound { Type BoundBVH AABBMin 1356.8012695 2847.3991699 41.5840378 AABBMax 1360.6166992 2851.2145996 92.9191589 Radius 25.809 Centroid 1358.7089844 2849.3068848 67.2516022 CG 1358.7060547 2849.2832031 55.6698952 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 2 { Sphere 0 { MaterialIndex 0 Center 2 Radius 1.90776 } Capsule 1 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.19235 } } ComputePolyNeighbors True Vertices 3 { 1358.7592773 2849.3537598 91.7267990 1358.7592773 2849.3532715 43.9825211 1358.7089844 2849.3068848 43.4917984 } } phBound { Type BoundBVH AABBMin 1356.5910645 2847.8962402 43.4818916 AABBMax 1360.7491455 2850.8918457 54.2916107 Radius 5.9815 Centroid 1358.6701660 2849.3940430 48.8867493 CG 852.4601440 1787.3572998 63.5486183 Margin 0.005 GeometryCenter 1358.6701660 2849.3940430 48.8867493 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 95 { Tri 0 { Vertices 1 53 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 28 53 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 53 1 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 6 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 5 27 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 5 7 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 27 7 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 7 5 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 8 7 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 8 29 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 12 8 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 2 1 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 2 25 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 2 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 26 11 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 24 0 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 25 11 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 24 11 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 10 11 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 24 10 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 13 10 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 13 12 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 36 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 1 36 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 38 36 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 36 3 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 5 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 15 29 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 13 29 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 13 30 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 0 32 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 13 45 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 0 24 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 32 24 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 35 37 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 36 38 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 37 49 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 36 37 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 38 32 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 4 3 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 15 5 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 14 15 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 16 54 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 54 45 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 15 54 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 35 34 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 35 31 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 49 37 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 35 32 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 43 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 31 32 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 45 43 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 43 45 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 22 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 16 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 54 16 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 22 45 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 33 34 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 33 39 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 33 48 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 47 49 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 47 50 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 4 49 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 14 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 50 18 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 20 14 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 14 20 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 22 16 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 33 43 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 41 47 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 41 55 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 55 19 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 50 47 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 18 17 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 18 50 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 20 17 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 18 46 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 17 18 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 19 51 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 46 47 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 51 19 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 41 34 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 39 40 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 40 39 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 42 39 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 43 42 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 21 42 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 21 43 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 21 44 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 21 22 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 22 20 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 51 23 22 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 57 { 0.8642578 -0.8317871 -4.0088348 0.2954102 -1.0554199 -4.3474884 0.9249268 -1.4863281 -5.1311951 -0.8645020 -0.4948730 -1.9401245 -1.2342529 -0.2783203 -0.8595009 -1.1260986 0.2678223 -3.0474739 -1.2155762 -0.7932129 -4.5988846 -0.8319092 0.8854980 -4.8857422 -0.0631104 1.4624023 -5.2552414 -1.0037842 0.8337402 -5.2784996 1.2264404 0.6865234 -5.1372986 2.0789795 -0.2531738 -5.3233681 1.1322021 1.3752441 -5.2860870 0.6818848 1.3745117 -4.2950325 -0.7520752 0.8740234 1.4343758 -0.9395752 0.9782715 -2.6989212 -0.4410400 1.1035156 -0.5175476 -1.0594482 1.0241699 3.5491104 -1.1035156 0.6589355 3.3909149 -1.1047363 0.3652344 4.3083992 -0.3916016 1.0039063 2.8917618 0.5736084 0.7363281 4.9735031 0.5887451 0.9384766 1.7781448 -0.0125732 1.1088867 4.9961014 1.5057373 0.2216797 -4.8598442 1.4163818 -0.2917480 -4.6826782 2.0355225 -0.9147949 -5.4048576 -1.5230713 -0.3691406 -4.7432175 -2.0791016 -0.9118652 -5.1076050 -0.2138672 1.4702148 -2.6570244 0.2374268 1.4978027 -4.3316536 0.6638184 -0.8557129 -0.1716347 1.1135254 -0.0637207 -0.8601608 0.2922363 -0.9831543 1.0015335 -0.5576172 -1.0000000 2.4617195 0.0609131 -1.0981445 -0.1721306 -0.1325684 -0.9418945 -1.9516716 -0.4903564 -1.0620117 -1.2497864 0.2747803 -0.8950195 -1.9698181 0.5180664 -0.9584961 4.5774422 0.7037354 -1.0263672 5.2303391 -0.3159180 -1.1337891 4.7288742 0.8431396 -0.5339355 4.3806496 1.0949707 -0.1132813 2.1481400 1.1293945 0.3942871 2.2619591 0.9732666 0.9514160 -1.1554298 -1.2927246 0.1447754 4.0815849 -1.1558838 -0.4387207 3.8021507 0.6636963 -0.9238281 2.3919449 -1.0551758 -0.8237305 -0.8713760 -1.1024170 0.0083008 2.4729385 -0.5389404 1.0664063 4.5335655 -1.0430908 0.6396484 5.3002815 -1.1304932 -1.2683105 -5.1975060 0.3872070 1.2778320 -0.4165916 -0.9931641 -0.6789551 5.4048615 0.3920898 -1.4978027 -5.2964783 } } phBound { Type BoundBVH AABBMin 1284.5886230 2690.0126953 44.0526810 AABBMax 1311.1374512 2716.5615234 70.6014786 Radius 22.992 Centroid 1297.8630371 2703.2871094 57.3270798 CG 1297.8524170 2703.2529297 57.3265800 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 52 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Sphere 0 { MaterialIndex 0 Center 0 Radius 13.2744 } } ComputePolyNeighbors True Vertices 1 { 1297.8630371 2703.2871094 57.3270798 } } phBound { Type BoundBVH AABBMin 1285.6557617 2694.2973633 34.6868858 AABBMax 1308.3654785 2709.0712891 63.4789925 Radius 19.7673 Centroid 1297.0106201 2701.6843262 49.0829391 CG 1297.1561279 2701.1196289 48.0829887 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 2 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL MaterialColorIndex 0 } Material 1 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 25 { Capsule 0 { MaterialIndex 1 CenterTop 48 CenterBottom 49 Radius 1.10385 } Capsule 1 { MaterialIndex 1 CenterTop 46 CenterBottom 47 Radius 0.730699 } Capsule 2 { MaterialIndex 1 CenterTop 44 CenterBottom 45 Radius 0.548205 } Capsule 3 { MaterialIndex 0 CenterTop 42 CenterBottom 43 Radius 0.456874 } Capsule 4 { MaterialIndex 1 CenterTop 40 CenterBottom 41 Radius 0.504194 } Capsule 5 { MaterialIndex 1 CenterTop 38 CenterBottom 39 Radius 0.832338 } Capsule 6 { MaterialIndex 0 CenterTop 36 CenterBottom 37 Radius 0.530764 } Capsule 7 { MaterialIndex 0 CenterTop 34 CenterBottom 35 Radius 0.448814 } Capsule 8 { MaterialIndex 0 CenterTop 32 CenterBottom 33 Radius 1.40581 } Capsule 9 { MaterialIndex 0 CenterTop 30 CenterBottom 31 Radius 0.394396 } Capsule 10 { MaterialIndex 1 CenterTop 28 CenterBottom 29 Radius 0.348749 } Capsule 11 { MaterialIndex 1 CenterTop 26 CenterBottom 27 Radius 1.12978 } Capsule 12 { MaterialIndex 0 CenterTop 24 CenterBottom 25 Radius 0.89792 } Capsule 13 { MaterialIndex 0 CenterTop 22 CenterBottom 23 Radius 0.642145 } Capsule 14 { MaterialIndex 0 CenterTop 20 CenterBottom 21 Radius 0.481884 } Capsule 15 { MaterialIndex 0 CenterTop 18 CenterBottom 19 Radius 0.471662 } Capsule 16 { MaterialIndex 0 CenterTop 16 CenterBottom 17 Radius 0.61354 } Capsule 17 { MaterialIndex 0 CenterTop 14 CenterBottom 15 Radius 0.30087 } Capsule 18 { MaterialIndex 1 CenterTop 12 CenterBottom 13 Radius 2.53227 } Capsule 19 { MaterialIndex 0 CenterTop 10 CenterBottom 11 Radius 0.40528 } Capsule 20 { MaterialIndex 1 CenterTop 8 CenterBottom 9 Radius 0.346706 } Capsule 21 { MaterialIndex 0 CenterTop 6 CenterBottom 7 Radius 0.279105 } Capsule 22 { MaterialIndex 0 CenterTop 4 CenterBottom 5 Radius 0.397097 } Capsule 23 { MaterialIndex 0 CenterTop 2 CenterBottom 3 Radius 0.435628 } Capsule 24 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.772129 } } ComputePolyNeighbors True Vertices 50 { 1307.0418701 2707.8208008 62.4039307 1298.7540283 2701.9770508 47.8720932 1304.2685547 2705.6047363 50.9038696 1300.6323242 2702.1862793 45.4453583 1298.5489502 2703.6027832 47.6349182 1298.3543701 2703.8708496 49.7422028 1302.5500488 2700.4218750 51.5991096 1300.0578613 2702.8164063 49.3642235 1300.8093262 2694.8747559 49.7769623 1299.8112793 2697.2556152 45.8999023 1298.2712402 2704.0273438 50.3881607 1297.5927734 2703.9946289 54.1494980 1298.6700439 2701.3759766 45.9588623 1295.0584717 2700.6826172 51.7293549 1296.6447754 2698.8315430 50.0202942 1295.4611816 2699.7041016 53.8229980 1297.3731689 2701.7399902 47.4074287 1292.3690186 2702.9064941 57.9029121 1294.0455322 2700.9355469 49.3439789 1288.3646240 2696.0673828 55.1254730 1293.6215820 2700.6982422 48.7332230 1288.3435059 2696.0102539 49.6907196 1293.4910889 2701.4990234 48.5506134 1286.5596924 2700.4248047 50.9456711 1292.3775635 2702.1745605 52.0017319 1287.6116943 2698.6623535 57.8646317 1303.0898438 2700.8481445 48.3609619 1299.6499023 2701.1010742 42.5605469 1299.7348633 2697.6562500 45.8743820 1299.0898438 2699.7841797 45.0805740 1299.6594238 2698.0163574 49.1164856 1299.1237793 2699.6950684 45.5848389 1298.7725830 2702.5712891 48.5510559 1298.4940186 2701.6884766 43.9092255 1299.1264648 2707.6762695 46.4191322 1297.7080078 2704.3979492 43.9030647 1297.8588867 2700.7988281 46.1617165 1296.6748047 2698.7529297 49.4113045 1297.2301025 2701.2204590 42.9460068 1294.0950928 2700.9748535 48.9527969 1295.1312256 2700.6762695 44.9424057 1291.3446045 2701.5175781 45.3159866 1299.2158203 2699.5585938 45.3815460 1298.7443848 2700.5595703 43.9959106 1296.7700195 2706.0769043 47.2292175 1297.8925781 2702.0305176 41.0732574 1297.0208740 2700.2565918 43.3719521 1295.9390869 2697.1525879 43.5497246 1298.3946533 2700.8586426 35.8602791 1298.2423096 2701.2478027 42.2639732 } } phBound { Type BoundBVH AABBMin 1296.4869385 2699.3837891 35.8194771 AABBMax 1300.6966553 2702.9553223 42.6165276 Radius 4.37828 Centroid 1298.5917969 2701.1694336 39.2180023 CG 967.5979614 2014.6264648 36.0017662 Margin 0.005 GeometryCenter 1298.5917969 2701.1694336 39.2180023 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 113 { Tri 0 { Vertices 53 19 62 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 43 62 19 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 62 43 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 53 62 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 45 46 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 46 45 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 43 44 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 44 11 45 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 43 65 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 11 44 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 65 12 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 65 1 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 18 19 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 18 21 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 21 18 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 19 53 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 20 53 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 53 26 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 21 26 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 53 46 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 15 16 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 15 21 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 23 16 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 23 21 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 34 24 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 22 16 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 50 69 61 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 2 1 65 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 14 12 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 14 1 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 58 56 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 58 55 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 0 59 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 14 59 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 54 55 56 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 29 14 55 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 29 42 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 14 13 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 54 56 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 50 47 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 24 50 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 50 24 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 49 50 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 50 61 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 49 8 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 50 8 69 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 29 55 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 56 28 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 28 9 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 29 9 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 28 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 49 9 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 7 8 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 26 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 34 26 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 35 25 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 24 34 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 11 12 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 13 14 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 33 42 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 33 29 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 47 48 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 47 24 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 52 48 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 51 48 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 5 25 26 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 5 46 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 46 11 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 3 11 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 11 13 64 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 64 13 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 42 41 13 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 41 42 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 35 26 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 52 34 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 25 63 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 52 63 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 63 68 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 30 51 68 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 51 33 48 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 30 33 51 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 4 6 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 64 6 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 4 3 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 3 4 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 5 4 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 5 27 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 57 25 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 25 57 63 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 38 39 40 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 39 38 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 27 38 57 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 67 57 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 39 27 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 71 40 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 6 41 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 39 41 71 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 6 64 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 33 30 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 41 33 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 103 { Vertices 41 32 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 104 { Vertices 36 37 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 105 { Vertices 71 41 72 Siblings -1 -1 -1 MaterialIndex 0 } Tri 106 { Vertices 72 41 66 Siblings -1 -1 -1 MaterialIndex 0 } Tri 107 { Vertices 37 66 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 108 { Vertices 68 60 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 109 { Vertices 30 60 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 110 { Vertices 30 31 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 111 { Vertices 70 32 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 112 { Vertices 32 70 36 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 73 { 0.4699707 -0.8791504 -2.8526459 0.3847656 -1.1997070 -2.5757904 0.5775146 -1.7856445 -2.9006653 -1.0892334 -0.4406738 0.6983490 -1.0534668 -0.5400391 1.2908936 -1.2087402 -0.1591797 0.1019402 -0.6767578 -0.8657227 1.1583138 1.7845459 1.6081543 -3.3208542 0.8781738 1.2209473 -3.3412132 1.2241211 0.8217773 -2.8794746 2.1048584 1.2849121 -3.2531052 -0.4187012 -0.9125977 -1.6176529 -0.0939941 -0.9326172 -2.3198128 0.0080566 -0.7634277 -1.1985054 0.6785889 -0.7612305 -2.3523827 -1.1611328 0.9382324 -3.2709541 -0.6750488 0.8144531 -3.2798271 -1.0025635 1.5598145 -3.3985252 -1.5904541 0.4755859 -3.2410965 -2.1048584 -0.0656738 -3.2397423 -1.2923584 0.1738281 -2.7515907 -0.9606934 0.7229004 -2.5214005 0.0216064 0.6274414 -3.1563301 -0.6022949 0.4936523 -2.6432266 -0.0444336 0.4338379 -2.1056976 -1.1253662 0.5336914 0.6123276 -1.1820068 0.3137207 -1.5901947 -1.3908691 0.4174805 2.1641579 1.6990967 0.5205078 -3.1683350 0.7664795 0.4020996 -2.3415260 0.3497314 0.8691406 1.1195831 0.3787842 1.0410156 2.7069092 0.7171631 0.7568359 1.5903015 0.5347900 0.1523438 1.2217865 -0.7364502 0.7680664 -1.6458397 -1.1601563 0.7143555 -1.2736702 1.0742188 0.4401855 2.9720726 1.1816406 0.2204590 2.5706749 -1.5595703 0.1953125 3.0063133 -0.9433594 -0.6394043 2.3388138 -1.6611328 -0.0241699 3.3621941 0.5758057 -0.3823242 1.7121277 0.4879150 -0.4025879 -1.2309723 -0.9548340 -1.1623535 -2.9572487 -0.5626221 -1.1013184 -2.6365471 -0.9116211 -0.7873535 -2.5637817 -1.1047363 -0.3627930 -1.6740265 0.5135498 0.5480957 -2.0500565 0.3194580 0.4284668 -0.9335518 0.7252197 0.9511719 -3.2563400 0.6383057 0.8134766 -2.6385307 0.1905518 0.6196289 -0.4290123 -0.3881836 0.8198242 -0.4324570 -1.3352051 -0.1435547 -2.2522697 0.6805420 -0.1599121 -2.6285095 0.8529053 -0.3964844 -2.3425713 0.7431641 -0.0053711 -2.9082870 -0.9213867 0.9833984 1.5347633 1.8808594 -0.6506348 -3.0060005 1.6608887 -1.0295410 -2.9409637 -0.2584229 0.9968262 2.4253540 0.3145752 0.7956543 -3.1374321 -1.5837402 -0.3286133 -2.8910599 -0.6489258 0.8610840 1.1949577 -0.4453125 -0.6872559 0.7423019 0.0023193 -1.3437500 -2.8820839 1.5726318 -0.4960938 3.3985252 -0.9721680 1.0952148 2.6216202 -0.2982178 1.1364746 1.7634926 -0.0847168 1.7858887 -3.3536339 0.6210938 0.7114258 3.0485916 -0.4056396 -0.5664063 3.0565262 0.9135742 -0.5400391 3.2431870 } } phBound { Type BoundBVH AABBMin 1294.1972656 2735.8935547 45.0711365 AABBMax 1298.6887207 2742.2724609 82.2709579 Radius 19.0045 Centroid 1296.4429932 2739.0830078 63.6710472 CG 1296.6074219 2739.3208008 63.6817055 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.01738 } } ComputePolyNeighbors True Vertices 2 { 1295.6024170 2737.3476563 81.1481476 1297.2835693 2740.8183594 46.1939468 } } phBound { Type BoundBVH AABBMin 1295.9383545 2739.2102051 46.8048897 AABBMax 1299.6667480 2742.3010254 54.2835083 Radius 4.45488 Centroid 1297.8024902 2740.7556152 50.5441971 CG 913.4328613 1931.7216797 10.2170086 Margin 0.005 GeometryCenter 1297.8024902 2740.7556152 50.5441971 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 4 51 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 51 57 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 51 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 3 50 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 61 51 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 61 50 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 18 17 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 38 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 38 18 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 38 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 38 52 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 18 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 3 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 45 39 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 0 2 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 0 4 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 0 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 0 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 45 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 30 45 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 39 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 39 30 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 39 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 38 40 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 40 60 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 40 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 60 40 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 6 57 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 33 6 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 25 23 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 22 60 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 32 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 23 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 57 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 57 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 5 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 5 6 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 33 47 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 5 7 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 7 5 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 47 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 40 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 32 33 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 41 34 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 33 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 39 34 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 36 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 34 36 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 58 34 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 29 30 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 27 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 29 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 26 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 58 31 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 58 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 37 35 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 36 37 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 46 47 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 26 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 28 26 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 26 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 29 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 28 15 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 55 29 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 55 53 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 31 29 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 26 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 46 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 54 46 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 46 54 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 35 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 31 49 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 42 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 12 11 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 42 11 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 43 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 43 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 21 44 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 49 21 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 53 55 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 9 8 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 49 53 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 53 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 56 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 56 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 55 56 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 56 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 48 49 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 48 19 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 49 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 44 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.1673584 -1.0991211 -1.5592651 -0.6981201 -1.2324219 -3.0203514 -0.3968506 -1.3576660 -1.7681389 -1.3630371 -0.6457520 -2.3409653 -1.0084229 -1.1079102 -2.9932823 0.1687012 -1.0625000 -1.7593079 0.1251221 -0.8515625 -3.3806305 -0.5371094 -1.3288574 -0.9636154 -0.6656494 0.0122070 3.3664131 -1.2716064 -0.1667480 2.2651520 -1.0275879 -0.0615234 3.7393112 -0.1441650 -1.3039551 1.3039436 -0.7746582 -1.4736328 1.8413239 -1.0279541 -1.3688965 3.3740997 -1.3227539 -0.9956055 3.1616707 -1.4885254 -0.8608398 1.9104919 -1.7752686 0.7236328 -3.7169418 -1.8641357 0.2460938 -3.6938858 -1.4044189 0.1699219 -3.2043343 0.1416016 -0.5056152 3.1516914 0.1694336 -0.9387207 3.3347549 0.1452637 -0.7878418 2.1286545 1.5322266 0.5908203 -3.5339890 0.7229004 -0.0192871 -3.1937828 1.8642578 0.3957520 -3.4728546 0.4741211 -0.6450195 -3.6845932 -1.0969238 -1.2890625 -0.4065056 -1.2993164 -1.0085449 -0.3831062 -1.3518066 -0.9094238 0.4242859 -1.3309326 -0.3005371 -0.3789749 -1.1309814 -0.0397949 -1.4224243 -0.7490234 0.2922363 0.1938515 0.5357666 0.3041992 -3.0695572 0.4283447 -0.2595215 -2.1661606 -0.2871094 0.3256836 -1.1133041 0.1463623 0.2163086 -0.2834282 0.2026367 -0.0585938 -1.1159401 0.4071045 -0.3981934 -0.5629578 -0.9145508 0.7429199 -3.2607689 -0.9572754 0.4768066 -2.6638527 -0.5292969 0.6081543 -2.8946342 -0.1960449 0.5075684 -2.6974640 -0.3095703 -1.5454102 2.7947350 -1.1638184 -1.3684082 1.8058815 -0.0781250 -1.2397461 2.3533592 -1.3697510 -0.4406738 -2.0055733 0.2854004 -0.8312988 -0.5581398 0.3784180 -0.6481934 -1.4400902 -0.1687012 -0.1987305 3.3868294 -0.1638184 -0.0170898 2.1657066 -1.5056152 -0.1784668 -3.3659515 -1.3177490 -1.0070801 -3.7393074 -0.7615967 1.1538086 -3.5336456 -0.7286377 0.1508789 1.0671959 0.2309570 -0.2529297 0.2489090 -1.4178467 -0.4904785 1.8549767 -1.4084473 -0.5654297 3.5110550 -0.4643555 -1.1733398 -3.7000809 -0.4385986 0.3779297 -0.5552750 -1.2746582 1.5454102 -3.5844574 0.5291748 0.6933594 -3.4873047 -1.5468750 -0.4411621 -3.7327690 } } phBound { Type BoundBVH AABBMin 1243.0856934 2734.2692871 35.5732422 AABBMax 1245.3684082 2736.4748535 74.6418457 Radius 19.5987 Centroid 1244.2270508 2735.3720703 55.1075439 CG 1244.2976074 2735.4418945 55.1101685 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 0.951808 } } ComputePolyNeighbors True Vertices 2 { 1244.1829834 2735.3793945 73.6877518 1244.2711182 2735.3647461 36.5273361 } } phBound { Type BoundBVH AABBMin 1243.0389404 2734.2739258 37.1873665 AABBMax 1246.5323486 2736.8151855 45.0790977 Radius 4.49837 Centroid 1244.7856445 2735.5444336 41.1332321 CG 955.7382813 2100.2419434 35.0987206 Margin 0.005 GeometryCenter 1244.7856445 2735.5444336 41.1332321 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 51 57 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 4 51 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 51 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 61 51 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 61 50 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 18 17 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 38 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 38 18 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 39 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 38 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 38 52 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 38 40 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 40 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 40 60 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 6 57 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 40 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 60 40 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 33 6 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 25 23 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 22 60 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 32 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 23 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 18 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 3 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 3 50 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 45 39 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 0 4 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 57 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 57 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 5 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 5 6 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 33 47 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 32 33 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 0 2 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 0 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 0 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 45 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 30 45 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 39 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 39 30 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 58 34 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 5 7 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 7 5 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 47 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 36 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 33 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 34 36 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 41 34 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 39 34 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 29 30 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 27 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 29 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 7 26 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 58 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 58 31 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 58 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 37 35 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 36 37 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 46 47 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 26 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 26 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 28 26 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 29 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 28 15 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 55 29 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 55 53 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 31 29 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 26 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 46 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 54 46 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 46 54 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 35 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 31 49 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 53 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 49 21 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 43 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 53 55 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 42 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 12 11 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 42 11 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 43 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 21 44 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 49 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 9 8 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 49 53 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 56 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 56 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 55 56 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 56 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 48 49 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 48 19 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 44 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -0.9958496 -1.0051270 -1.5529747 -0.6168213 -1.2631836 -3.0988998 -0.2821045 -1.2617188 -1.7803383 -1.2148438 -0.6562500 -2.4048767 -0.9068604 -1.1462402 -3.0691566 0.2446289 -0.9829102 -1.8134575 0.1346436 -0.9377441 -3.5367737 -0.3798828 -1.1606445 -0.9297600 -0.3304443 0.4924316 3.5344849 -0.9414063 0.2199707 2.4089699 -0.6527100 0.4567871 3.9458656 0.0816650 -0.9238281 1.4441032 -0.4840088 -1.0351563 2.0455208 -0.6578369 -0.7958984 3.6616554 -0.9453125 -0.4692383 3.4193573 -1.1533203 -0.4609375 2.0963402 -1.6684570 0.4899902 -3.9458656 -1.7467041 0.0463867 -3.8816795 -1.2960205 0.0231934 -3.3761253 0.4194336 -0.0063477 3.3198853 0.4564209 -0.3928223 3.5450821 0.3824463 -0.3645020 2.2633743 1.4321289 0.3994141 -3.8587990 0.6945801 -0.1416016 -3.4250183 1.7467041 0.2248535 -3.7908783 0.4466553 -0.7717285 -3.8852921 -0.8803711 -1.0742188 -0.3260574 -1.0709229 -0.8115234 -0.3159409 -1.0870361 -0.6442871 0.5290985 -1.1059570 -0.1513672 -0.3650780 -0.9644775 -0.0046387 -1.4916763 -0.5427246 0.4572754 0.1726303 0.5222168 0.1706543 -3.3124199 0.4639893 -0.2709961 -2.3132324 -0.1657715 0.3688965 -1.2237244 0.2750244 0.3464355 -0.3559227 0.2950439 0.0129395 -1.2140884 0.5119629 -0.2509766 -0.6123123 -0.8450928 0.5546875 -3.4969139 -0.8579102 0.3620605 -2.8457603 -0.4686279 0.4650879 -3.1140747 -0.1480713 0.3913574 -2.9101906 -0.0089111 -1.0109863 3.0395279 -0.8500977 -0.9423828 2.0138474 0.1865234 -0.7661133 2.5427666 -1.2087402 -0.4338379 -2.0670776 0.4018555 -0.6550293 -0.5695610 0.4506836 -0.5659180 -1.5163612 0.1365967 0.3002930 3.5548363 0.0888672 0.3557129 2.2538605 -1.3945313 -0.3168945 -3.5160599 -1.2277832 -1.1232910 -3.8521767 -0.7165527 0.9130859 -3.8214645 -0.4862061 0.4072266 1.1030540 0.3800049 -0.0407715 0.2382660 -1.0926514 -0.1206055 2.0068626 -1.0141602 -0.0361328 3.7575150 -0.4271240 -1.2705078 -3.8279686 -0.2844238 0.4689941 -0.6343536 -1.2015381 1.2707520 -3.8870964 0.4956055 0.4946289 -3.7823257 -1.4462891 -0.5961914 -3.8809586 } } phBound { Type BoundBVH AABBMin 1264.0274658 2751.2021484 34.9662704 AABBMax 1267.6824951 2754.7480469 80.9014740 Radius 23.1083 Centroid 1265.8549805 2752.9750977 57.9338722 CG 1265.9099121 2753.0700684 57.9361191 Margin 0.005 GeometryCenter 0.0000000 0.0000000 0.0000000 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FLAG_NO_DECAL FLAG_NOT_CLIMBABLE MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 1 { Capsule 0 { MaterialIndex 0 CenterTop 0 CenterBottom 1 Radius 1.46164 } } ComputePolyNeighbors True Vertices 2 { 1265.7882080 2752.9907227 79.4351807 1265.9217529 2752.9594727 36.4325638 } } phBound { Type BoundBVH AABBMin 1264.0574951 2751.2775879 37.1962662 AABBMax 1269.4285889 2755.2502441 46.3287315 Radius 5.65757 Centroid 1266.7430420 2753.2639160 41.7624969 CG 975.2851563 2119.9221191 35.2376976 Margin 0.005 GeometryCenter 1266.7430420 2753.2639160 41.7624969 0.0025 Materials 1 { Material 0 { MaterialIndex 54 ProcId 0 RoomId 0 PedDensity 0 PolyFlags FORMATS_EMPTY_FLAGS MaterialColorIndex 0 } } VertexColors null MaterialColors null Polygons 103 { Tri 0 { Vertices 61 51 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 1 { Vertices 51 57 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 2 { Vertices 4 51 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 3 { Vertices 51 4 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 4 { Vertices 3 50 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 5 { Vertices 0 1 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 6 { Vertices 0 4 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 7 { Vertices 0 3 4 Siblings -1 -1 -1 MaterialIndex 0 } Tri 8 { Vertices 0 27 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 9 { Vertices 45 3 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 10 { Vertices 0 2 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 11 { Vertices 30 45 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 12 { Vertices 18 50 3 Siblings -1 -1 -1 MaterialIndex 0 } Tri 13 { Vertices 3 45 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 14 { Vertices 61 50 17 Siblings -1 -1 -1 MaterialIndex 0 } Tri 15 { Vertices 18 17 50 Siblings -1 -1 -1 MaterialIndex 0 } Tri 16 { Vertices 38 59 16 Siblings -1 -1 -1 MaterialIndex 0 } Tri 17 { Vertices 38 52 59 Siblings -1 -1 -1 MaterialIndex 0 } Tri 18 { Vertices 16 17 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 19 { Vertices 38 16 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 20 { Vertices 38 18 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 21 { Vertices 39 40 38 Siblings -1 -1 -1 MaterialIndex 0 } Tri 22 { Vertices 45 39 18 Siblings -1 -1 -1 MaterialIndex 0 } Tri 23 { Vertices 39 45 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 24 { Vertices 6 57 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 25 { Vertices 23 25 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 26 { Vertices 33 6 25 Siblings -1 -1 -1 MaterialIndex 0 } Tri 27 { Vertices 25 23 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 28 { Vertices 57 2 1 Siblings -1 -1 -1 MaterialIndex 0 } Tri 29 { Vertices 57 6 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 30 { Vertices 5 2 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 31 { Vertices 5 6 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 32 { Vertices 33 47 6 Siblings -1 -1 -1 MaterialIndex 0 } Tri 33 { Vertices 5 7 2 Siblings -1 -1 -1 MaterialIndex 0 } Tri 34 { Vertices 7 5 46 Siblings -1 -1 -1 MaterialIndex 0 } Tri 35 { Vertices 47 46 5 Siblings -1 -1 -1 MaterialIndex 0 } Tri 36 { Vertices 38 40 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 37 { Vertices 40 60 52 Siblings -1 -1 -1 MaterialIndex 0 } Tri 38 { Vertices 60 40 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 39 { Vertices 40 41 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 40 { Vertices 40 39 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 41 { Vertices 39 34 41 Siblings -1 -1 -1 MaterialIndex 0 } Tri 42 { Vertices 39 30 58 Siblings -1 -1 -1 MaterialIndex 0 } Tri 43 { Vertices 58 34 39 Siblings -1 -1 -1 MaterialIndex 0 } Tri 44 { Vertices 22 23 24 Siblings -1 -1 -1 MaterialIndex 0 } Tri 45 { Vertices 22 60 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 46 { Vertices 32 23 22 Siblings -1 -1 -1 MaterialIndex 0 } Tri 47 { Vertices 32 33 23 Siblings -1 -1 -1 MaterialIndex 0 } Tri 48 { Vertices 33 32 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 49 { Vertices 41 34 32 Siblings -1 -1 -1 MaterialIndex 0 } Tri 50 { Vertices 34 36 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 51 { Vertices 36 47 33 Siblings -1 -1 -1 MaterialIndex 0 } Tri 52 { Vertices 7 26 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 53 { Vertices 26 27 0 Siblings -1 -1 -1 MaterialIndex 0 } Tri 54 { Vertices 29 30 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 55 { Vertices 29 31 30 Siblings -1 -1 -1 MaterialIndex 0 } Tri 56 { Vertices 26 12 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 57 { Vertices 26 28 27 Siblings -1 -1 -1 MaterialIndex 0 } Tri 58 { Vertices 28 26 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 59 { Vertices 29 27 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 60 { Vertices 28 15 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 61 { Vertices 55 29 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 62 { Vertices 55 53 29 Siblings -1 -1 -1 MaterialIndex 0 } Tri 63 { Vertices 31 29 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 64 { Vertices 58 30 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 65 { Vertices 58 31 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 66 { Vertices 58 35 34 Siblings -1 -1 -1 MaterialIndex 0 } Tri 67 { Vertices 34 35 36 Siblings -1 -1 -1 MaterialIndex 0 } Tri 68 { Vertices 36 37 47 Siblings -1 -1 -1 MaterialIndex 0 } Tri 69 { Vertices 37 36 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 70 { Vertices 46 47 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 71 { Vertices 54 46 37 Siblings -1 -1 -1 MaterialIndex 0 } Tri 72 { Vertices 26 7 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 73 { Vertices 11 12 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 74 { Vertices 46 11 7 Siblings -1 -1 -1 MaterialIndex 0 } Tri 75 { Vertices 11 46 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 76 { Vertices 46 54 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 77 { Vertices 37 35 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 78 { Vertices 54 35 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 79 { Vertices 31 49 35 Siblings -1 -1 -1 MaterialIndex 0 } Tri 80 { Vertices 42 43 12 Siblings -1 -1 -1 MaterialIndex 0 } Tri 81 { Vertices 42 13 43 Siblings -1 -1 -1 MaterialIndex 0 } Tri 82 { Vertices 43 15 28 Siblings -1 -1 -1 MaterialIndex 0 } Tri 83 { Vertices 43 13 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 84 { Vertices 53 55 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 85 { Vertices 9 8 53 Siblings -1 -1 -1 MaterialIndex 0 } Tri 86 { Vertices 13 14 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 87 { Vertices 56 55 15 Siblings -1 -1 -1 MaterialIndex 0 } Tri 88 { Vertices 55 56 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 89 { Vertices 56 15 14 Siblings -1 -1 -1 MaterialIndex 0 } Tri 90 { Vertices 56 10 9 Siblings -1 -1 -1 MaterialIndex 0 } Tri 91 { Vertices 8 9 10 Siblings -1 -1 -1 MaterialIndex 0 } Tri 92 { Vertices 49 21 54 Siblings -1 -1 -1 MaterialIndex 0 } Tri 93 { Vertices 21 44 11 Siblings -1 -1 -1 MaterialIndex 0 } Tri 94 { Vertices 12 11 42 Siblings -1 -1 -1 MaterialIndex 0 } Tri 95 { Vertices 42 11 44 Siblings -1 -1 -1 MaterialIndex 0 } Tri 96 { Vertices 49 19 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 97 { Vertices 44 21 20 Siblings -1 -1 -1 MaterialIndex 0 } Tri 98 { Vertices 19 20 21 Siblings -1 -1 -1 MaterialIndex 0 } Tri 99 { Vertices 48 19 49 Siblings -1 -1 -1 MaterialIndex 0 } Tri 100 { Vertices 48 49 8 Siblings -1 -1 -1 MaterialIndex 0 } Tri 101 { Vertices 53 49 31 Siblings -1 -1 -1 MaterialIndex 0 } Tri 102 { Vertices 49 53 8 Siblings -1 -1 -1 MaterialIndex 0 } } ComputePolyNeighbors True Vertices 62 { -1.6405029 -1.5217285 -1.7971306 -1.0856934 -1.9550781 -3.5861053 -0.5725098 -1.9863281 -2.0602417 -1.9411621 -0.9648438 -2.7829704 -1.5181885 -1.7468262 -3.5516853 0.2625732 -1.6120605 -2.0985680 0.0985107 -1.5317383 -4.0928230 -0.7124023 -1.8217773 -1.0759354 -0.4704590 0.7062988 4.0901794 -1.4342041 0.3503418 2.7877083 -0.9678955 0.6840820 4.5662346 0.0186768 -1.5053711 1.6711502 -0.8593750 -1.6191406 2.3671188 -1.1015625 -1.2348633 4.2373428 -1.5092773 -0.7053223 3.9569473 -1.8272705 -0.6718750 2.4259300 -2.5211182 0.8369141 -4.5662308 -2.6855469 0.1650391 -4.4919548 -1.9973145 0.0844727 -3.9069138 0.6284180 -0.1330566 3.8418350 0.6463623 -0.7290039 4.1025810 0.5357666 -0.6784668 2.6192207 2.2210693 0.3869629 -4.4654732 1.0366211 -0.3679199 -3.9634972 2.6855469 0.0876465 -4.3868752 0.5933838 -1.3088379 -4.4961357 -1.4705811 -1.6391602 -0.3773193 -1.7360840 -1.2172852 -0.3656120 -1.7441406 -0.9594727 0.6122818 -1.7235107 -0.2021484 -0.4224701 -1.4920654 0.0083008 -1.7261963 -0.7993164 0.6740723 0.1997757 0.8038330 0.1276855 -3.8331947 0.6700439 -0.5434570 -2.6769142 -0.2305908 0.5007324 -1.4161148 0.4427490 0.4221191 -0.4118805 0.4398193 -0.0913086 -1.4049683 0.7457275 -0.5175781 -0.7085800 -1.2528076 0.8532715 -4.0466957 -1.2919922 0.5595703 -3.2931709 -0.6849365 0.6782227 -3.6038055 -0.2011719 0.5329590 -3.3677292 -0.1289063 -1.6296387 3.5174026 -1.4108887 -1.4401855 2.3304672 0.1953125 -1.2741699 2.9425392 -1.9094238 -0.6247559 -2.3920631 0.5363770 -1.1254883 -0.6591072 0.6201172 -0.9938965 -1.7547646 0.2259521 0.3649902 4.1137314 0.1583252 0.4548340 2.6082115 -2.1823730 -0.4270020 -4.0688553 -2.0079346 -1.6791992 -4.4578094 -1.0200195 1.3896484 -4.4222717 -0.7177734 0.5915527 1.2764778 0.5644531 -0.1821289 0.2757263 -1.7000732 -0.1564941 2.3223839 -1.5714111 -0.0349121 4.3482742 -0.7956543 -1.9851074 -4.4297981 -0.4023438 0.6657715 -0.7340851 -1.7272949 1.9863281 -4.4982262 0.7955322 0.6267090 -4.3769798 -2.2896729 -0.8496094 -4.4911156 } } } }